在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点就是掌握某个问题/知识的学习要点。哪些知识点能够真正帮助到我们呢?下面是小编辛苦为大家带来的初一下册数学知识点优秀8篇,如果能帮助到您,小编的一切努力都是值得的。
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。
规定:0的平方根是0。
负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。例如:-1的平方根为1i,-9的平方根为3i。
平方根包含了算术平方根,算术平方根是平方根中的一种。
任何复数都有平方根。
算术平方根为:a=a(a为非负数)
被开方数是乘方运算里的幂。
求平方根可通过逆运算平方来求。
开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
若x的平方等于a,那么x就叫做a的平方根,即a=x(a为非负数)
1、消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
归纳:基本思路:“消元”——把“二元”变为“一元”。
2、代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
3、加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
4、教科书中没有的几种解法
(1)加减-代入混合使用的方法:
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。
(2)换元法
特点:两方程中都含有相同的代数式,换元后可简化方程也是主要原因。
(3)设参数法
初一数学下册期末考试知识点总结一(苏教版)
第七章 平面图形的认识(二) 1
第八章 幂的运算 2
第九章 整式的乘法与因式分解 3
第十章 二元一次方程组 4
第十一章 一元一次不等式 4
第十二章 证明 9
第七章 平面图形的认识(二)
一、知识点:
1、“三线八角”
① 如何由线找角:一看线,二看型。
同位角是“F”型;
内错角是“Z”型;
同旁内角是“U”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:
如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:
如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:
判定定理 性质定理
条件 结论 条件 结论
同位角相等 两直线平行 两直线平行 同位角相等
内错角相等 两直线平行 两直线平行 内错角相等
同旁内角互补 两直线平行 两直线平行 同旁内角互补
4、图形平移的性质:
图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:
三角形的任意两边之和大于第三边;
三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,
则
6、三角形中的主要线段:
三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:
三角形的3个内角的和等于180°;
直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:
n边形的内角和等于(n-2)180°;
任意多边形的外角和等于360°。
第八章 幂的运算
幂(p5
相交线与平行线
1、同一平面内,两直线不平行就相交。
2、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
3、垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
4、垂直三要素:垂直关系,垂直记号,垂足
5、垂直公理:过一点有且只有一条直线与已知直线垂直。
6、垂线段最短;
7、点到直线的距离:直线外一点到这条直线的垂线段的长度。
8、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行。
10、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题
11、平行线的判定。
结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质:1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。
初一下册知识点总结
1、同底数幂的乘法:am?an=am+n ,底数不变,指数相加。
2、同底数幂的除法:am÷an=am-n ,底数不变,指数相减。
3、幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。
4、零指数与负指数公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。
5、(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;
② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6、配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;
※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。
注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;
系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
8、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
多项式里,次数最高项的次数叫多项式的次数;
注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
9、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
10、合并同类项法则:系数相加,字母与字母的指数不变。
11、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
平面几何部分
1、补角重要性质:同角或等角的补角相等。
余角重要性质:同角或等角的余角相等。
2、①直线公理:过两点有且只有一条直线。
线段公理:两点之间线段最短。
②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短。
比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米。
3、三角形的内角和等于180
三角形的一个外角等于与它不相邻的两个内角的和
三角形的一个外角大于与它不相邻的任何一个内角
4、n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形
5、n边形的内角和公式:180(n-2); 多边形的外角和等于360
6、判断三条线段能否组成三角形:
①a+b>c(a b为最短的两条线段)②a-b
7、第三边取值范围:
a-b 8、对应周长取值范围: 若两边分别为a,b则周长的取值范围是 2a 如两边分别为5和7则周长的取值范围是 14 9、相关命题: (1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。 (2) 锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。 (3)任意一个三角形两角平分线的夹角=90+第三角的一半。 (4) 钝角三角形有两条高在外部。 (5) 全等图形的大小(面积、周长)、形状都相同。 (6) 面积相等的两个三角形不一定是全等图形。 (7) 三角形具有稳定性。 (8) 角平分线到角的两边距离相等。 (9)有一个角是60的等腰三角形是等边三角形。 一、目标与要求 1、了解全面调查的概念;会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据;会画扇形统计图,能用统计图描述数据;经历统计调查的一般过程,体验统计与生活的关系。 2、经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。 3、理解频数、频数分布的意义,学会制作频数分布表;学会画频数分布直方图和频数折线图。 二、重点 学会画频数分布直方图; 分层抽样的方法和样本的分析、归纳; 抽样调查、样本、总体等概念以及用样本估计总体的思想; 全面调查的过程(数据的收集、整理、描述)。 三、难点 绘制扇形统计图; 样本的抽取; 分层抽样方案的制定; 确定组距和组数。 一、目标与要求 1、理解对顶角和邻补角的概念,能在图形中辨认; 2、掌握对顶角相等的性质和它的推证过程; 3、通过在图形中辨认对顶角和邻补角,培养学生的识图能力。 二、重点 在较复杂的图形中准确辨认对顶角和邻补角; 两条直线互相垂直的概念、性质和画法; 同位角、内错角、同旁内角的概念与识别。 三、难点 在较复杂的图形中准确辨认对顶角和邻补角; 对点到直线的距离的概念的理解; 对平行线本质属性的理解,用几何语言描述图形的性质; 能区分平行线的性质和判定,平行线的性质与判定的混合应用。 四、知识框架 五、知识点、概念总结 1、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。 2、对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。 3、对顶角和邻补角的关系 4、垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。 5、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 6、垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。 7、垂线性质 (1)在同一平面内,过一点有且只有一条直线与已知直线垂直。 (2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 (3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 8、同位角、内错角、同旁内角: 同位角:1与5像这样具有相同位置关系的一对角叫做同位角。 内错角:2与6像这样的一对角叫做内错角。 同旁内角:2与5像这样的一对角叫做同旁内角。 9、平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。 10、平行线:在同一平面内,不相交的两条直线叫做平行线。 11、命题:判断一件事情的语句叫命题。 12、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。 13、假命题:条件和结果相矛盾的命题是假命题。 14、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。 15、对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。 16、定理与性质 对顶角的性质:对顶角相等。 17、垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 18、平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 19、平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 20、平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 21、命题的扩展 三种命题 (1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。 (2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。 (3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。 四种命题的相互关系 (1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。 (2)四种命题的真假关系: 两个命题互为逆否命题,它们有相同的真假性。两个命题为互逆命题或互否命题,它们的真假性没有关系 命题之间的关系 (1)能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。 (2)若p,则q形式的命题中p叫做命题的条件,q叫做命题的结论。 (3)命题的分类: A:原命题:一个命题的本身称之为原命题,如:若x1,则f(x)=(x-1)2单调递增。 B:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x1. C:否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序, 如:若x小于1,则f(x)=(x-1)2不单调递增。 D:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题, 如:若f(x)=(x-1)2不单调递增,则x小于1. (4)命题的否定 命题的否定是只将命题的结论否定的新命题,这与否命题不同。 (5)4种命题及命题的否定的真假性关系 原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。 充分条件与必要条件 (1)若p,则q为真命题,叫做由p推出q,记作p=q,并且说p是q的充分条件,q是p的必要条件。 (2)若p,则q为假命题,叫做由p推不出q,记作pq,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。 充要条件 如果既有p=q,又有q=p,就记作pq,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。 一、目标与要求 1。感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上; 2。经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 3。通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。 三、重点 理解并掌握不等式的性质; 正确运用不等式的性质; 建立方程解决实际问题,会解ax+b=cx+d类型的一元一次方程; 寻找实际问题中的不等关系,建立数学模型; 一元一次不等式组的解集和解法。 四、难点 一元一次不等式组解集的理解; 弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式; 正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 五、知识点、概念总结 1。不等式:用符号,,,表示大小关系的式子叫做不等式。 2。不等式分类:不等式分为严格不等式与非严格不等式。 一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号),连接的不等式称为非严格不等式,或称广义不等式。 3。不等式的解:使不等式成立的未知数的值,叫做不等式的解。 4。不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 5。不等式解集的表示方法: (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x—12的解集是x3 (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。 6。解不等式可遵循的一些同解原理 (1)不等式F(x) G(x)与不等式 G(x)F(x)同解。 (2)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x) G(x)与不等式H(x)+F(x) (3)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)H(x)G(x)同解。 7。不等式的性质: (1)如果xy,那么yy;(对称性) (2)如果xy,y那么x(传递性) (3)如果xy,而z为任意实数或整式,那么x+z(加法则) (4)如果xy,z0,那么xz如果xy,z0,那么xz (5)如果xy,z0,那么xzy如果xy,z0,那么xz (6)如果xy,mn,那么x+my+n(充分不必要条件) (7)如果x0,m0,那么xmyn (8)如果x0,那么x的n次幂y的n次幂(n为正数) 8。一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 9。解一元一次不等式的一般顺序: (1)去分母 (运用不等式性质2、3) (2)去括号 (3)移项 (运用不等式性质1) (4)合并同类项 (5)将未知数的系数化为1 (运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集 10。 一元一次不等式与一次函数的综合运用: 一般先求出函数表达式,再化简不等式求解。 11。一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一一起,就组成 了一个一元一次不等式组。 12。解一元一次不等式组的步骤: (1) 求出每个不等式的解集; (2) 求出每个不等式的解集的公共部分;(一般利用数轴) (3) 用代数符号语言来表示公共部分。(也可以说成是下结论) 13。解不等式的诀窍 (1)大于大于取大的(大大大); 例如:X—1,X2 ,不等式组的解集是X2 (2)小于小于取小的(小小小); 例如:X—4,X—6,不等式组的解集是X—6 (3)大于小于交叉取中间; (4)无公共部分分开无解了; 14。解不等式组的口诀 (1)同大取大 例如,x2,x3 ,不等式组的解集是X3 (2)同小取小 例如,x2,x3 ,不等式组的解集是X2 (3)大小小大中间找 例如,x2,x1,不等式组的解集是1 (4)大大小小不用找 例如,x2,x3,不等式组无解 15。应用不等式组解决实际问题的步骤 (1)审清题意 (2)设未知数,根据所设未知数列出不等式组 (3)解不等式组 (4)由不等式组的解确立实际问题的解 (5)作答 16。用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。初一下册数学知识点汇总 篇6
初一下册数学知识点汇总 篇7
初一下册数学知识点汇总 篇8