数学向量的知识点(最新7篇)

在日复一日的学习中,是不是经常追着老师要知识点?知识点就是学习的重点。哪些知识点能够真正帮助到我们呢?以下是人见人爱的小编分享的数学向量的知识点(最新7篇),如果能帮助到您,小编的一切努力都是值得的。

数学向量的知识点 篇1

向量的概念、向量的基本定理

【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

考点二:向量的运算

【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

考点三:定比分点

【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

考点四:向量与三角函数的综合问题

【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

考点五:平面向量与函数问题的交汇

【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

【命题规律】命题多以解答题为主,属中档题。

考点六:平面向量在平面几何中的应用

【内容解读】向量的坐标表示实际上就是向量的代数表示。在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起。因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证。也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决。

【命题规律】命题多以解答题为主,属中等偏难的试题。

数学向量的知识点 篇2

数乘向量

实数和向量a的乘积是一个向量,记作a,且∣a∣=∣∣∣a∣。

当0时,a与a同方向;

当0时,a与a反方向;

当=0时,a=0,方向任意。

当a=0时,对于任意实数,都有a=0。

注:按定义知,如果a=0,那么=0或a=0。

实数叫做向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣∣1时,表示向量a的有向线段在原方向(0)或反方向(0)上伸长为原来的∣∣倍;

当∣∣1时,表示向量a的有向线段在原方向(0)或反方向(0)上缩短为原来的∣∣倍。

数与向量的乘法满足下面的运算律

结合律:(a)b=(ab)=(ab)。

向量对于数的分配律(第一分配律):(+)a=a+a.

数对于向量的分配律(第二分配律):(a+b)=a+b.

数乘向量的消去律:① 如果实数0且a=b,那么a=b。② 如果a0且a=a,那么=。

数学向量的知识点 篇3

1.有向线段的定义

线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的方向。像这样,具有方向的线段叫做有向线段。记作:。

2、有向线段的三要素:有向线段包含三个要素:始点、方向和长度。

3、向量的定义:(1)具有大小和方向的量叫做向量。向量有两个要素:大小和方向。

(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量。书写时,则用带箭头的小写字母,,,来表示。

4、向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||。

5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=。

6.相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:-.

7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线。向量平行于向量,记作//。规定: //。

8.零向量:长度等于零的向量叫做零向量,记作:。零向量的方向是不确定的,是任意的。由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量。

9.单位向量:长度等于1的向量叫做单位向量。

10.向量的加法运算:

(1)向量加法的三角形法则

11.向量的减法运算

12、两向量的和差的模与两向量模的和差之间的关系

对于任意两个向量,,都有|||-|||||+||。

13.数乘向量的定义:

实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作。

向量的长度与方向规定为:(1)||=|

(2)当0时,与方向相同;当0时,与方向相反。

(3)当=0时,当=时,=。

14.数乘向量的运算律:(1))= (结合律)

(2)(+) =+(第一分配律)(3)(+)=+。(第二分配律)

15.平行向量基本定理

如果向量,则//的充分必要条件是,存在唯一的实数,使得=。

如果与不共线,若m=n,则m=n=0.

16.非零向量的单位向量:非零向量的单位向量是指与同向的单位向量,通常记作。

=||,即==(,)

17.线段中点的向量表达式

点M是线段AB的中点,O是平面内任意一点,则=(+)。

18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则

+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2)。

19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1)。

20、两向量相等和平行的条件:若=(a1,a2),=(b1,b2) ,则

=a1=b1且a2=b2.

//a1b2-a2b1=0.特别地,如果b10,b20,则// =。

21.向量的长度公式:若=(a1,a2),则||=。

22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=。

23.中点公式

若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y= 。

24.重心公式

在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则

x=,y=

25.(1)两个向量夹角的取值范围是[0,p],即0,p.

当=0时,与同向;当=p时,与反向

当= 时,与垂直,记作。

(3)向量的内积定义:=||||cos.

其中,||cos叫做向量在向量方向上的正射影的数量。规定=0.

(4)内积的几何意义

与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在 方向上的正射影数量的乘积

当0,90时,0;=90时,

90时,0.

26.向量内积的运算律:

(1)交换率

(2)数乘结合律

(3)分配律

(4)不满足组合律

27.向量内积满足乘法公式

29.向量内积的应用:

数学向量的知识点 篇4

1.平面向量的数量积

平面向量数量积的定义

已知两个非零向量a和b,它们的夹角为,把数量|a||b|cos 叫做a和b的数量积(或内积),记作ab.即ab=|a||b|cos ,规定0a=0.

2.向量数量积的运算律

(1)ab=ba

(2)(a)b=(ab)=a(b)

(3)(a+b)c=ac+bc

[探究] 根据数量积的运算律,判断下列结论是否成立。

(1)ab=ac,则b=c吗?

(2)(ab)c=a(bc)吗?

提示:(1)不一定,a=0时不成立,

另外a0时,ab=ac.由数量积概念可知b与c不能确定;

(2)(ab)c=a(bc)不一定相等。

(ab)c是c方向上的向量,而a(bc)是a方向上的向量,当a与c不共线时它们必不相等。

数学向量的知识点 篇5

【考纲解读】

1、理解平面向量的概念与几何表示、两个向量相等的含义;掌握向量加减与数乘运算及其意义;理解两个向量共线的含义,了解向量线性运算的性质及其几何意义。

2、了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件。

3、理解平面向量数量积的含义及其物理意义;了解平面向量数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

【考点预测】

高考对平面向量的考点分为以下两类:

(1)考查平面向量的概念、性质和运算,向量概念所含内容较多,如单位向量、共线向量、方向向量等基本概念和向量的加、减、数乘、数量积等运算,高考中或直接考查或用以解决有关长度,垂直,夹角,判断多边形的形状等,此类题一般以选择题形式出现,难度不大。

(2)考查平面向量的综合应用。平面向量常与平面几何、解析几何、三角等内容交叉渗透,使数学问题的情境新颖别致,自然流畅,此类题一般以解答题形式出现,综合性较强。

【要点梳理】

1、向量的加法与减法:掌握平行四边形法则、三角形法则、多边形法则,加法的运算律;

2、实数与向量的乘积及是一个向量,熟练其含义;

3、两个向量共线的条件:平面向量基本定理、向量共线的坐标表示;

4、两个向量夹角的范围是:[0,π]

5、向量的数量积:熟练定义、性质及运算律,向量的模,两个向量垂直的充要条件。

高中数学必修4目录 篇6

第一章三角函数

1.1任意角和弧度制

1.2任意角的三角函数

1.3三角函数的诱导公式

1.4三角函数的图象与性质

1.5函数y=Asin(ωxψ)

1.6三角函数模型的简单应用

本章综合

第二章平面向量

2.1平面向量的实际背景及基本概念

2.2平面向量的线性运算

2.3平面向量的基本定理及坐标表示

2.4平面向量的数量积

2.5平面向量应用举例

本章综合

第三章三角恒等变换

3.1两角和与差的正弦、余弦和正切公式

3.2简单的三角恒等变换

本章综合

数学向量的知识点 篇7

1.向量的基本概念

(1)向量

既有大小又有方向的量叫做向量。物理学中又叫做矢量。如力、速度、加速度、位移就是向量。

向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)

(5)平行向量

方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共线向量。

若向量a、b平行,记作a∥b.

规定:0与任一向量平行。

(6)相等向量

长度相等且方向相同的向量叫做相等向量。

①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可。

②向量a,b相等记作a=b.

③零向量都相等。

④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关。

2.对于向量概念需注意

(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小。

(2)向量共线与表示它们的有向线段共线不同。向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上。

(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上。

3.向量的运算律

(1)交换律:α+β=β+α

(2)结合律:(α+β)+γ=α+(β+γ)

(3)数量加法的分配律:(λ+μ)α=λα+μα

(4)向量加法的分配律:γ(α+β)=γα+γβ

一键复制全文保存为WORD