在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。只要掌握了数学学习的方法和思维,学习过程就变得通透了,下面是的小编为您带来的小学数学的学习方法优秀4篇,如果能帮助到您,小编的一切努力都是值得的。
第一,不懂就问。学习的时候多少都会遇到自己难以解决的问题,这时候就要积极提问、讨论,不要因为害怕胆小,就憋着问题或者略过问题,这样只会造成你在学习上的隐患。
对于那些比较难的问题,可以去向老师提问,或者跟其他同学讨论,你就可能从别人那里学习到好的的方法和技巧。要知道,学习的基础是勤学,学习的关键是好问。
第二,实战培养。有的同学在平时的学习过程中,表现都很好,作业也完成的很不错,可是一到了考试的时候,成绩就不那么理想了,所以在平时,大家要把作业当成考试,然后在考试时,就把它当成作业,适时的去调整方法。
第三,把握良机。如果在一定时间过后,没有对知识点进行复习,就会遗忘。每个人记忆的时长都是不一样的,可以根据自己遗忘的规律去复习功课,这样就能保证牢牢的掌握好知识点了。
一、基本运算要熟、要快
基本运算不但应当“会”,而且要熟、要快。这样的要求不但是为了目前的质量,而且更重要的是保证进一步学习的进度与质量,是为了运用自如。应当与“会了就可以,习题可以少做”的思想斗争。
二、要尽可能多做些习题
应当尽可能地多做些习题,以达到熟能生巧的境地。不要以为多做习题搞得熟些是浪费时间,少做几个习题,煮成夹生饭那才是浪费时间呢!算术不熟练,做代数题时处处用到算术,每一个基本运算都比旁人慢,因而做代数习题所花的时间自然比那算术熟练的人所花的时间多了。
不仅如此,如果一个人运算熟,在听老师进一步讲课的时候,对于一些与以往知识有关的推导部分很快地接受了,只要专听这一节课的主要的关键性的几点就可以了。
而不熟练的人却必须枝枝节节地每步必细听,每步必细想,这样虽然把自己的神经搞得十分紧张而疲乏,但结果还不能抓住要点。换言之,基本训练熟练的人,他仅仅在已有的知识上添上一点或两点新东西,而不熟练的则势必处处被动,添上一大堆东西,当然也就串不起来了。
三、学好数学必须不怕算,要算到底
客观事物的发展愈来越复杂了,要求愈精密了。如果要求运算一百次的计算中,我们错了一次,那我们的成绩不是99分而是0分,因为答错了!如果是“人造卫星”,它就硬是不肯上天。
怎样来对付“烦”的计算?最好先有一些准备,其中包括思想上的和熟练运算技巧上的。一切应当根据客观需要,客观烦,就不怕烦。如果我们主观上的就怕烦,那我们思想上就解除了武装,在将来深钻的过程中,就会出现困难。宁可充分准备,而不要被解除武装。
应当培养同学的不怕烦、深入想的本领,在运算方面应当培养同学具有喜欢算,不怕烦,经常练的习惯。我所讲的算,也把符号运算包括在内,也就是包括逻辑推理在内。
四、学好书上省去的思考过程也重要
从书上学好形式推理重要,而学好书上所没有的思考过程也重要。先学会书上的,再问前人是怎样想出这个结论的,如果习惯了,则创造发明也有了初步的基础了。
五、学好数学要常练、苦练、活练
数形性质、基本运算、逻辑推理的熟练还不能仅仅依靠一时的锻炼,而必须靠经常的锻炼。“拳不离手,曲不离口”,此之谓也。一有机会就练,经常地练,练熟了,练到灵活运用的程度,练到推陈出新的程度。不仅要常练,还要苦练、活练。
难题要不要做?我个人的意见,还是有计划有重点地做些好,这是一种锻炼。书上的习题再难些,数学书上的习题一定能用数学来解决,数学书上第五章的习题一般是能用第五章的知识来解决的,这就是一个重要的提示,重要的范围。
因此,适当的做些难题,练了思路,对将来处理实际问题是有好处的。不然套得上公式的会,套不上的就不会,这样的人在处理实际问题时,也就能力不大了。对待较难的问题,就要苦练,不达目的不休的苦练。
关于活练,最好多问几个为什么。看到圆,看它能启发些什么,茶壶盖为什么不会掉到茶壶里去?而茶叶筒盖却容易掉到茶叶筒里去?看到方,方砖可以铺地,还有没有其它形式的砖头?如,在空间又如何?看到球,水珠为什么成为球形?训练同学,循序渐进,不要轻视容易,不要惧怕困难。
小学五年级学生数学的学法指导
1、指导“听“。
数学教学中指导学生听课,首先应从培养学生的数学兴趣入手来集中学生的注意力,激活他原有的认知结构,专心听讲;其次,要指导学生会听,主要应注意听老师每一节课开始所讲的教学内容、重点和学习要求,注意听教师在讲解例题时关键部分的提示和处理,注意听教师对概念要点的剖析和概念体系的串连,注意听教师每节课的小结和对某些较难习题的提示。
2、指导“读”。
这里所讲的读是指阅读数学课本,主要是指导学生从各个方面去深入理解课本内容。①读标题。要求学生细细体会标题,能提纲挈领地抓住教材的主要内容;②读例题。在预习时应要求学生带着问题读例题,并初步领会解题方法;③读插图。教师应指导学生认真阅读课本上的插图,使学生更具体、更形象、更准确地理解文字的内容;④读算式。应要求学生准确地读出算式,弄清算式的意义;⑤读结语。要求学生对教材的结语逐字逐句地理解分析,以便准确地把握。
3、指导“写”。
数学教学中,对学生的'学法指导,教师一是要指导学生学会做学习笔记;二是要指导学生将数学语言转化为数学符号,数学符号是数学语言的重要表现形式,它不仅简洁美观,而且便于记忆和使用;三是熟练掌握数学中常用的书写格式;四是会作图,作图包括根据条件作图,解题时将文字语言转化为直观图形。教师应着力于以下四点:一是从学生思维的“最近发展区”入手引导学生积极主动地思考;二是善于变式思考。变式是数学的一大特点,对于某一个问题,改变结论,结论将如何,改变结论,条件又将如何,在变中求活,在变中找方法;三是比较归纳,将数学知识系统化;四是教师在教学过程中,要善于暴露思维过程,留下一定的思维时间和空间,让学生“思在知识的转折点,思在问题的疑难处,思在矛盾的解决上,思在真理的探求中。”这样,就能使学生学会并掌握基本的数学思想方法,达到启思悟理,融会贯通。
再次数学学法指导应指导学生在“说、看、练、记”上着力,掌握数学学习的方法。
1、启发“说”
首先启发学生说思路,说思维过程。课堂上要让每个学生都有说自己想法的机会,可以让学生根据某一问题,独自小声说,同桌之间练习说,四人小组互相说,等等。通过说,训练思维方法;其次,引导学生用简明、准确、规范的数学用语,完整地回答问题,在引导学生观察、分析、推理、判断后,启发学生用自己的话总结、概括出定义、法则或公式,使感性认识上升为理性认识。
2、指导“看”。
帮助学生选准观察点,进行有目的地观察,在看中辨析、思考,增强观察力,激发求知欲。
3、指导“练”。
通过指导练习,强化“做”的过程。在练习中,应突出练习的目的性、启发性、针对性、多样性,促使学生系统地探索新知识,有效地解决新问题,以达到会、熟、活。
4、指导“记”
要想学好数学,对老师所讲的概念、定理、公式、法则、重要结论、解题规律都必须记住。因此,在数学教学中要结合教学内容向学生传授记忆的方法。
①理解记忆法。很多数学知识,光靠死记硬背不容易记住。如果让学生在理解的基础上记忆,就不容易忘记了;
②分类记忆法。许多数学知识之间往往有着密切的内在联系,如果我们对它们进行恰当的分类,就可以形成一个知识网,记住了一个就记住了一类;
③比较记忆法。对于一些容易混淆的概念,通过比较弄清它们的联系与区别,把两个概念组成一对进行记忆,也不容易忘记。另外,数学中所涉及到的数学学习方法还应是对大多数学生适用的“通法”,而不能是适用于少数个别学生的特殊方法。总之,学法指导应由“学会”向“会学”发展,从根本上让学生掌握学习方法,形成学习的能力,让学生终身受益。
小学六年级数学学习方法
1、利用生活中的数学体现,激发孩子内在的学习动机
数学贯穿与日常生活,家长可在与孩子的日常生活接触中观察孩子的喜好,融入数学思维引导孩子主动学习。并有意识地进行思考、猜想、讨论与动手动脑等,利用孩子感兴趣喜欢的元素作为数学思维的承担载体,激发孩子内在的学习动机,使孩子感受到相互学的重要和有趣,使他们对数学学习更加主动积极。
2、抓住数学敏感期,循序渐进,发展数学思维
研究证明,儿童在4岁前后会出现一个“数学敏感期”。他们会对数字概念,比如数、数字、数量关系、排列顺序、数运算、形体特征等突然发生极大兴趣,对它们的种种变化有着强烈的求知欲,这标志着孩子的数学敏感期到来了。错过了这个“数学敏感期”,有的人一生都害怕数学,一提数学就头疼。
而在面对“数学”这种纯抽象概念的知识时,让孩子觉得容易的学习方法,也只有以具体、简单的实物为起始。由感官的训练,从“量”的实际体验,到“数”的抽象认识。自少到多,进入加、减、乘、除的计算,逐渐培养孩子的数学心智和分析整合的逻辑概念。让孩子在亲自动手中,先由对实物的多与少、大和小,求得了解,在自然而然地联想具体与抽象间的关系。
3、讨论合作,共同发散数学思维
每个孩子都有其独特的天马行空的思维能力,在学校学习中,就可以借助这种思维的差异性,让孩子参与到团队合作中来,共同堆一座积木或进行折纸游戏,共同探讨知识交流合作,利用空间思维与多彩丰富的具象结合,在互助交流中动手动脑、发散思维的同时建构自己的经验和知识,参与到团队合作中来,有助于语言能力的增强,形成自己的认知结构和思维系统。
孩子在小时候以形象思维为主,喜欢把一切抽象问题都形象化,但这不利于抽象思维的培养,那么培养孩子良好的思维习惯就很重要,具体到数学思维,就是要培养孩子及时总结分析问题和解决问题的方法,按步思维,有意识的逐步培养孩子的抽象思维能力和思维品质,加强训练。
六年级数学学习方法
小学数学学习必须关注孩子创新意识的培养和创新能力的发展。从某种意义上讲,养成创造性学习的习惯,比获得了多少知识更重要。这需要从以下几方面做起:
1、培养学生善于质疑的习惯。
在参与、经历数学知识发现、形成的探究活动中,善于发现,提出有针对性、有价值的数学问题,质疑问难,是创造性学习习惯培养的一个重要方面。在数学学习过程中,要逐步培养学生自主探究、积极思考、主动质疑的学习习惯,让他们想问、敢问、好问、会问。
质疑习惯的培养,也可从模仿开始,老师要注意质疑的“言传身教”,教给学生可以在哪儿找疑点。一般来说,质疑可以发生在新旧知识的衔接处、学习过程的困惑处、法则规律的结论处、教学内容的重难点及关键点处,概念的形成过程中、解题思路的分析过程中、动手操作的实践中;还要让学生学会变换角度,提出问题。
2、培养学生手脑结合,注重实践的习惯。
心理学研究告诉我们,小学生的思维正处在具体形象思维向抽象思维、逻辑思维发展的过渡阶段,特别是低年级儿童,他们的思维仍以具体形象思维为主要形式,他们的抽象思维需要在感性材料的支持下才能进行,因此小学数学教育必须重视培养学生动手、动脑、动口的良好习惯,使学生通过看一看、摸一摸、拼一拼、摆一摆、讲一讲来获取新知。
例如在学习“角的初步认识”时,角的大小与两边的长短有没有联系?这个问题就可以通过操作自制的活动角,边操作、边观察、边讨论,从而得出正确的结论。开展类似的教学活动,就能使学生养成手脑结合,勤于实践的学习习惯。
3、培养学生的良好思维习惯。
培养学生多角度思考和解决问题的习惯,培养他们思维的多向性和灵活性。通过“你能想出不同的方法吗?”“你还能想到什么?”“你有独特的见解吗?”你能从另一个角度看问题吗?“等言语,启发和诱导,鼓励学生敢想、敢说,不怕出错、敢于发表不同的见解,培养学生的创新思维习惯。
中考数学二次函数解题方法
1、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:
这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。
进一步有:
①若是否存在这样的动点构成矩形呢?先让动点构成平行四边形,再验证两条对角线相等否?若相等,则所求动点能构成矩形,否则这样的动点不存在。
②若是否存在这样的动点构成棱形呢?先让动点构成平行四边形,再验证任意一组邻边相等否?若相等,则所求动点能构成棱形,否则这样的动点不存在。
③若是否存在这样的动点构成正方形呢?先让动点构成平行四边形,再验证任意一组邻边是否相等?和两条对角线是否相等?若都相等,则所求动点能构成正方形,否则这样的动点不存在。
2、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:(此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形。)
先用动点坐标“一母示”的方法设出直接动点坐标,分别表示(如果图形是动图形就只能表示出其面积)或计算(如果图形是定图形就计算出它的具体面积),然后由题意建立两个图形面积关系的一个方程,解之即可。(注意去掉不合题意的点),如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可。
3、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:
若夹直角的两边与y轴都不平行:先设出动点坐标(一母示),视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可。
若夹直角的两边中有一边与y轴平行,此时不能使用斜率公式。补救措施是:过余下的那一个点(没在平行于y轴的那条直线上的点)直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定。
高一数学二次函数知识点归纳
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1、抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2、抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5、常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6、抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1、二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
顶点坐标
对称轴
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到。
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。
2、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a)。
3、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。
二次函数性质
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1、作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。