在学习中,是不是听到知识点,就立刻清醒了?知识点在教育实践中,是指对某一个知识的泛称。还在为没有系统的知识点而发愁吗?这次为您整理了数学知识点总结之频数分布直方图通用2篇,希望大家可以喜欢并分享出去。
知识点:
1、在描述和整理数据时,往往可以把数据按照数据的范围进行分组,整理数据后可以得到频数分布表,在平面直角坐标系中,用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图。
2、条形图和直方图的异同:
直方图是特殊的条形图,条形图和直方图都易于比较各数据之间的差别,能够显示每组中的具体数据和频率分布情况。
直方图与条形图不同,条形图是用长方形的高(纵置时)表示各类别(或组别)频数的多少,其宽度是固定的;
直方图是用面积表示各组频数的多少(等距分组时可以用长方形的高表示频数) ,长方形的宽表示各组的组距,各长方
形的高和宽都有意义 。 此外由于分组数据都有连续性, 直方图的各长方形通常是连续排列, 中间没有空隙, 而条形图是分开排列,长方形之间有空隙。
3、频数折线图的制作一般都是在频数分布直方图的基础上得到的。
具体步骤是:
首先取直方图中每一个长方形上边的中点;
然后再在横轴上取两个频数为 0 的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);
最后再将这些点用线段依次连接起来,就得到了频数折线图 。
4、频数分布直方图的画法:
(1)找到这一组数据的最大值和最小值;
(2)求出最大值与最小值的差;
(3)确定组距,分组;
(4)列出频数分布表;
(5)由频数分布表画出频数分布直方图 。
5、画频数分布直方图的注意事项:
(1)分组时,不能出现数据中同一数据在两个组中的情况,为了避免,通常分组时,比题中要求数据单位多一位 。
例如:题中数据要求到整数位,分组时要求数据到 0.5 即可 。
(2)组距和组数的确定没有固定的标准,要凭借数据越多,分成的组数也就越多。
1.频数与频率:
每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。
2.频数分布表:
运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。
画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来。
3.频数分布直方图:
(1)当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。
(2)绘制的频数分布直方图的一般步骤:
①计算最大值与最小值的差(极差),确定统计量的范围;
②决定组数和组距,数据越多,分的组数也应当越多;
③确定分点;
④列频数分布表;
⑤画频数分布直方图。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的`性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:
①结果必须是整式
②结果必须是积的形式
③结果是等式
④因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:
①系数是整数时取各项最大公约数。
②相同字母取最低次幂。
③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。
②确定商式
③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。