在平日的学习中,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。为了帮助大家掌握重要知识点,下面是小编辛苦为大家带来的中考数学的知识点【优秀8篇】,希望大家可以喜欢并分享出去。
圆柱体要领:如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
圆柱体的定义
1、旋转定义法:一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。
2、平移定义法:以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。
性质1.圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。
2、圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱体的高。
3、圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形或正方形。
圆柱的侧面积=底面周长x高,即:
S侧面积=Ch=2πrh
底面周长C=2πr=πd
圆柱的表面积=侧面积+底面积x2=2πr2+Ch=2πr(r+h)
4、圆柱的体积=底面积x高
即 V=S底面积×h=(π×r×r)h
5、等底等高的圆柱的体积是圆锥的3倍 6.圆柱体可以用一个平行四边形围成
圆柱的表面积= 圆柱的表面积=侧面积+底面积x2
6、把圆柱沿底面直径分成两个同样的部分,每一个部分叫半圆柱。这时与原来的圆柱比较,体积不变、表面积增加两个直径X高的长方形。
7、圆柱的轴截面是直径x高的长方形,横截面是与底面相同的圆。
相似形
重点相似三角形的判定和性质
☆内容提要☆
一、本章的两套定理
第一套(比例的有关性质):
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:
注意:①定理中“对应”二字的含义;
②平行相似(比例线段)平行。
二、相似三角形性质
1、对应线段…;2.对应周长…;3.对应面积…。
三、相关作图
①作第四比例项;②作比例中项。
四、证(解)题规律、辅助线
1、“等积”变“比例”,“比例”找“相似”。
2、找相似找不到,找中间比。方法:将等式左右两边的比表示出来。
3、添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4、对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。
5、对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。
一、三角形的有关概念
1、三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。
2、三角形中的三条重要线段:角平分线、中线、高
(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
说明:①三角形的角平分线、中线、高都是线段;
②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。
二、三角形的边和角
三边关系:三角形中任意两边之和大于第三边。
由三边关系可以推出:三角形任意两边之差小于第三边。
三、三角形内、外角的关系
1、三角形的内角和等于180°。
2、直角三角形的两个锐角互余。
3、三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。
4、三角形的外角和为360°。
四、等腰三角形与直角三角形:
1、等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,三条边都相等的三角形叫做等边三角形(或正三角形)。
说明:等边三角形是等腰三角形的特殊情况。
2、直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。
五大知识点:
1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用
2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)
3、根的判别式
4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)
5、一元二次方程根与系数的关系(韦达定理)
【课本相关知识点】
1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。
2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)
3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。其中ax2是 ,a是 ,bx是 ,b是 ,c是常数项
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
8.多项式的加法:
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
11.掌握同类项的概念时注意:
(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:
①所含字母相同。
②相同字母的次数也相同。
(2)同类项与系数无关,与字母排列的顺序也无关。
(3)所有常数项都是同类项。
12.合并同类项步骤:
(1)准确的找出同类项;
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;
(3)写出合并后的结果。
13.在掌握合并同类项时注意:
(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;
(2)不要漏掉不能合并的项;
(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
14.整式的拓展
整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握。因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。
整式四则运算的主要题型有:
(1)单项式的四则运算
此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。
(2)单项式与多项式的运算
1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。(2)除以一个数等于乘以这个数的倒数。(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。
通过上面对数学中实数的运算知识的讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得理想的成绩哦。
一、数与代数
Ⅰ、数与式
1、有理数的加法、乘法运算
同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。
同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。
2、合并同类项
合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。
3、去、添括号法则
去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号;
括号前面是负号,去、添括号都变号。
4、单项式运算
加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。
5、分式混合运算法则
分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。
6、平方差公式
两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。
7、完全平方公式
首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。
8、因式分解
一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根,
换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)
9、二次三项式的因式分解
先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。
10、比和比例
两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积;
前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比;
两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比;
商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。
11、根式和无理式
表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制;
无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。
12、最简根式的条件
最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。
2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标②第二象限的点:横坐标 0,纵坐标③第三象限的点:横坐标 0,纵坐标④第四象限的点:横坐标 0,纵坐标 0。
7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标 0,纵坐标②x轴负半轴上的点:横坐标 0,纵坐标③y轴正半轴上的点:横坐标 0,纵坐标④y轴负半轴上的点:横坐
标 0,纵坐标⑤坐标原点:横坐标 0,纵坐标 0。(填、或=)
8、点P(a,b)到x轴的距离是 |b| ,到y轴的距离是 |a| 。
9、对称点的坐标特点①关于x轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
10、点P(2,3) 到x轴的距离是 到y轴的距离是 点P(2,3) 关于x轴对称的点坐标为( ,点P(2,3) 关于y轴对称的'点坐标为( , )。
11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与x轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直 。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQy轴。
12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b→←) 在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即 a = b ;如果点P(a,b) 在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即 a = -b 。
13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。
14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按左减右加、上加下减的规律进行。如将点P(2,3)向左平移2个单位后得到的点的坐标为( , );将点P(2,3)向右平移2个单位后得到的点的坐标为( , );将点P(2,3)向上平移2个单位后得到的点的坐标为( , );将点P(2,3)向下平移2个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。