浅谈 中值滤波【优秀5篇】

滤波技术 篇1

有关EMI的一点常识

滤波技术是抑制干扰的一种有效措施,尤其是在对付开关电源EMI信号的传导干扰和某些辐射干扰方面,具有明显的效果。任何电源线上传导干扰信号,均可用差模和共模干扰信号来表示。差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,属于非对称性干扰。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。因此,欲削弱传导干扰,把EMI信号控制在有关EMC标准规定的极限电平以下。

除抑制干扰源以外,最有效的方法就是在开关电源输入和输出电路中加装EMI滤波器。一般设备的工作频率约为10~50 kHz。EMC很多标准规定的传导干扰电平的极限值都是从10 kHz算起。对开关电源产生的高频段EMI信号,只要选择相应的去耦电路或网络结构较为简单的EMI滤波器,就不难满足符合EMC标准的滤波效果。

瞬态干扰

是指交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大。瞬态干扰会造成单片开关电源输出电压的波动;当瞬态电压叠加在整流滤波后的直流输入电压VI上,使VI超过内部功率开关管的漏-源击穿电压V(BR)DS时,还会损坏TOPSwitch芯片,因此必须采用抑制措施。

通常,静电放电(ESD)和电快速瞬变脉冲群(EFT)对数字电路的危害甚于其对模拟电路的影响。静电放电在5 — 200MHz的频率范围内产生强烈的射频辐射。此辐射能量的峰值经常出现在35MHz — 45MHz之间发生自激振荡。许多I/O电缆的谐振频率也通常在这个频率范围内,结果,电缆中便串入了大量的静电放电辐射能量。

当电缆暴露在4 — 8kV静电放电环境中时,I/O电缆终端负载上可以测量到的感应电压可达到600V。这个电压远远超出了典型数字的门限电压值0.4V。典型的感应脉冲持续时间大约为400纳秒。将I/O电缆屏蔽起来,且将其两端接地,使内部信号引线全部处于屏蔽层内,可以将干扰减小60 — 70dB,负载上的感应电压只有0.3V或更低。

电快速瞬变脉冲群也产生相当强的辐射发射,从而耦合到电缆和机壳线路。电源线滤波器可以对电源进行保护。线 — 地之间的共模电容是抑制这种瞬态干扰的有效器件,它使干扰旁路到机壳,而远离内部电路。当这个电容的容量受到泄漏电流的限制而不能太大时,共模扼流圈必须提供更大的保护作用。这通常要求使用专门的带中心抽头的共模扼流圈,中心抽头通过一只电容(容量由泄漏电流决定)连接到机壳。共模扼流圈通常绕在高导磁率铁氧体芯上,其典型电感值为15 ~ 20mH。

传导的抑制

往往单纯采用屏蔽不能提供完整的电磁干扰防护,因为设备或系统上的电缆才是最有效的干扰接收与发射天线。许多设备单台做电磁兼容实验时都没有问题,但当两台设备连接起来以后,就不满足电磁兼容的要求了,这就是电缆起了接收和辐射天线的作用。唯一的措施就是加滤波器,切断电磁干扰沿信号线或电源线传播的路径,与屏蔽共同够成完善的电磁干扰防护,无论是抑制干扰源、消除耦合或提高接收电路的抗能力,都可以采用滤波技术。针对不同的干扰,应采取不同的抑制技术,由简单的线路清理,至单个元件的干扰抑制器、滤波器和变压器,再至比较复杂的稳压器和净化电源,以及价格昂贵而性能完善的不间断电源,下面分别作简要叙述。

专用线路

只要通过对供电线路的简单清理就可以取得一定的干扰抑制效果。如在三相供电线路中认定一相作为干扰敏感设备的供电电源;以另一相作为外部设备的供电电源;再以一相作为常用测试仪器或其他辅助设备的供电电源。这样的处理可避免设备间的一些相互干扰,也有利于三相平衡。 值得一提的是在现代电子设备系统中,由于配电线路中非线性负载的使用,造成线路中谐波电流的存在,而零序分量谐波在中线里不能相互抵消,反而是叠加,因此过于纤细的中线会造成线路阻抗的增加,干扰也将增加。同时过细的中线还会造成中线过热。

瞬变干扰抑制器

属瞬变干扰抑制器的有气体放电管、金属氧化物压敏电阻、硅瞬变吸收二极管和固体放电管等多种。其中金属氧化物压敏电阻和硅瞬变吸收二极管的工作有点象普通的稳压管,是箝位型的干扰吸收器件;而气体放电管和固体放电管是能量转移型干扰吸收器件(以气体放电管为例,当出现在放电管两端的电压超过放电管的着火电压时,管内的气体发生电离,在两电极间产生电弧。由于电弧的压降很低,使大部分瞬变能量得以转移,从而保护设备免遭瞬变电压破坏)。瞬变干扰抑制器与被保护设备并联使用。

气体放电管

气体放电管也称避***,目前常用于程控交换机上。避***具有很强的浪涌吸收能力,很高的绝缘电阻和很小的寄生电容,对正常工作的设备不会带来任何有害影响。但它对浪涌的起弧响应,与对直流电压的起弧响应之间存在很大差异。例如90V气体放电管对直流的起弧电压就是90V,而对5kV/μs的浪涌起弧电压最大值可能达到1000V。这表明气体放电管对浪涌电压的响应速度较低。故它比较适合作为线路和设备的一次保护。此外,气体放电管的电压档次很少。

金属氧化物压敏电阻

由于价廉,压敏电阻是目前广泛应用的瞬变干扰吸收器件。描述压敏电阻性能的主要参数是压敏电阻的标称电压和通流容量即浪涌电流吸收能力。前者是使用者经常易弄混淆的一个参数。压敏电阻标称电压是指在恒流条件下(外径为7mm以下的压敏电阻取0.1mA;7mm以上的取1mA)出现在压敏电阻两端的电压降。由于压敏电阻有较大的动态电阻,在规定形状的冲击电流下(通常是8/20μs的标准冲击电流)出现在压敏电阻两端的电压(亦称是最大限制电压)大约是压敏电阻标称电压的1.8~2倍(此值也称残压比)。 这就要求使用者在选择压敏电阻时事先有所估计,对确有可能遇到较大冲击电流的场合,应选择使用外形尺寸较大的器件(压敏电阻的电流吸收能力正比于器件的通流面积,耐受电压正比于器件厚度,而吸收能量正比于器件体积)。 使用压敏电阻要注意它的固有电容。根据外形尺寸和标称电压的不同,电容量在数千至数百pF之间,这意味着压敏电阻不适宜在高频场合下使用,比较适合于在工频场合,如作为晶闸管和电源进线处作保护用。 特别要注意的是,压敏电阻对瞬变干扰吸收时的高速性能(达ns)级,故安装压敏电阻必须注意其引线的感抗作用,过长的引线会引入由于引线电感产生的感应电压(在示波器上,感应电压呈尖刺状)。引线越长,感应电压也越大。为取得满意的干扰抑制效果,应尽量缩短其引线。 关于压敏电阻的电压选择,要考虑被保护线路可能有的电压波动(一般取1.2~1.4倍)。如果是交流电路,还要注意电压有效值与峰值之间的关系。所以对220V线路,所选压敏电阻的标称电压应当是220×1.4×1.4≈430V。 此外,就压敏电阻的电流吸收能力来说,1kA(对8/20μs的电流波)用在晶闸管保护上,3kA用在电器设备的浪涌吸收上;5kA用在雷击及电子设备的过压吸收上;10kA用在雷击保护上。 压敏电阻的电压档次较多,适合作设备的一次或二次保护。 2.1.7硅瞬变电压吸收二极管(TVS管) 硅瞬变电压吸收二极管具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力,及极多的电压档次。可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。 TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种,它们的主要参数是击穿电压、漏电流和电容。 使用中TVS管的击穿电压要比被保护电路工作电压高10%左右,以防止因线路工作电压接近TVS击穿电压,使TVS漏电流影响电路正常工作;也避免因环境温度变化导致TVS管击穿电压落入线路正常工作电压的范围。 TVS管有多种封装形式,如轴向引线产品可用在电源馈线上;双列直插的和表面贴装的适合于在印刷板上作为逻辑电路、I/O总线及数据总线的保护。

TVS管在使用中应注意的事项:

1、对瞬变电压的吸收功率(峰值)与瞬变电压脉冲宽度间的关系。手册给的只是特定脉宽下的吸收功率(峰值),而实际线路中的脉冲宽度则变化莫测,事前要有估计。对宽脉冲应降额使用。

2、对小电流负载的保护,可有意识地在线路中增加限流电阻,只要限流电阻的阻值适当,不会影响线路的正常工作,但限流电阻对干扰所产生的电流却会大大减小。这就有可能选用峰值功率较小的TVS管来对小电流负载线路进行保护。

3、对重复出现的瞬变电压的抑制,尤其值得注意的是TVS管的稳态平均功率是否在安全范围之内。

4、作为半导体器件的TVS管,要注意环境温度升高时的降额使用问题。

5、特别要注意TVS管的引线长短,以及它与被保护线路的相对距离。

6、当没有合适电压的TVS管供采用时,允许用多个TVS管串联使用。串联管的最大电流决定于所采用管中电流吸收能力最小的一个。而峰值吸收功率等于这个电流与串联管电压之和的乘积。

7、TVS管的结电容是影响它在高速线路中使用的关键因素,在这种情况下,一般用一个TVS管与一个快恢复二极管以背对背的方式连接,由于快恢复二极管有较小的结电容,因而二者串联的等效电容也较小,可满足高频使用的要求。

8、固体放电管 固体放电管是一种较新的瞬变干扰吸收器件,具有响应速度较快(10~20ns级)、吸收电流较大、动作电压稳定和使用寿命长等特点。 固体放电管与气体放电管同属能量转移型。当外界干扰低于触发电压时,管子呈截止状。一旦干扰超出触发电压时,伏安特性发生转折,进入负阻区,此时电流极大,而导通电阻极小,使干扰能量得以转移。随着干扰减小,通过放电管电流的回落,当放电管的通过电流低于维持电流时,放电管就迅速走出低阻区,而回到高阻态,完成一次放电过程。 固体放电管的一个优点是它的短路失效模式(器件失效时,两电极间呈短路状),为不少应用场合所必须,已在国内外得到广泛应用。 固体放电管的电压档次较少,比较适合于作网络、通信设备,乃至部件一级的保护。

数字图像处理_领域平均滤波_中值滤波 篇2

东华大学实验报告

课程 数字图像处理 名称 数字图像变换

实验名称: 邻域平均法(box模板)和中值滤波处理

一、 实验目的

图像变换是数字图像处理中的一种综合变换,如直方图变换、几何变换等。通过本实验,使得学生掌握两种变换的程序实现方法。

二、 实验任务

请设计程序,分别用邻域平均法,其模板为:

111

111*1 9111 和中值滤波法对testnoise图像进行去噪处理(中值滤波的模板的大小也设为3×3)。

三、实验环境

本实验在Windows平台上进行,对内存及cpu主频无特别要求,使用VC或者MINGW(gcc)编译器均可。

四、设计思路

介绍代码的框架结构、所用的数据结构、各个类的介绍(类的功能、类中方法的功能、类的成员变量的作用)、各方法间的关系

试验要求中以给出大致的编程思路和源代码以及代码注释,只有黑框部分需要自己填写。在此不进行赘述。

五、具体实现

实现设计思路中定义的所有的数据类型,对每个操作给出实际算法。对主程序和其他模块也都需要写出实际算法。

注意:源代码中要加上注释。 代码:(红色为重点代码) (3*3) /*------利用第一次实验课提供的 dhc.h 和 dhc.c文件以获取位图的高 宽 以及从文件头到实际的位图数据的偏移字节数,从而实现对位图实际数据的操作。------*/ #include#include

unsigned char *bitmap,*count,*new_color; /*------main()函数编写------*/ int main() { //定义整数 i, j 用于函数循环时的,nr_pixels为图像中像素的个数

int i, j ,nr_pixels,nr_w,nr_h; //定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像

FILE *fp, *fpnew; //定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。

// argc=3; // argv[1]=“test.bmp”; // argv[2]=“testzf.bmp”;

//参数输入出错显示

/* if (argc != 3) { printf(“please input the name of input and out bitmap filesn”); exit(1); }*/ // 获取位图文件相关信息

// hdr = get_header(argv[1]); hdr = get_header(“testnoise.bmp”); if (!hdr) exit(1); //以二进制可读方式打开输入位图文件

fp = fopen(“testnoise.bmp”, “rb”); if (!fp) {

printf(“File open error!n”);

exit(1); } // 文件指针指向数据区域

fseek(fp, hdr->offset, SEEK_SET);

//计算位图像素的个数 nr_pixels = hdr->width * hdr->height; nr_w = hdr->width; nr_h = hdr->height; bitmap = malloc(nr_pixels); new_color = malloc(nr_pixels); count = malloc((nr_w+2)*(+nr_h+2)); //读取位图数据到bitmap中

fread(bitmap, nr_pixels, 1, fp); fclose(fp);

//因为图像边缘无法使用邻域平均,所以根据邻近颜色填补图像的周围一圈,存入count[]数组中

//中心图像存入count[] for(i=nr_w+3;i<(nr_w+2)*(+nr_h+2)-nr_w-3;i++) {

j=i/(nr_w+2);

if(i%(nr_w+2)!=0&&(i+1)%(nr_w+2)!=0) count[i]=bitmap[i-nr_w-1-2*j]; } //填补第一排

for(i=1;i

count[i]=bitmap[i-1]; } //填补最后一排

for(i=1;i

count[(nr_w+2)*(nr_h+1)+i]=bitmap[nr_w*(nr_h-1)+i-1]; } //填补左边一排

for(i=0;i

count[i*(nr_w+2)]=count[i*(nr_w+2)+1]; } //填补右边一排

for(i=0;i

count[(i+1)*(nr_w+2)-1]=count[(i+1)*(nr_w+2)-2]; }

//邻域平均3*3 for(j=nr_w+3,i=0;j<(nr_w+2)*(+nr_h+2)-nr_w-3;j++) {

if(j%(nr_w+2)!=0&&(j+1)%(nr_w+2)!=0)

new_color[i]=(count[j]+count[j-1]+count[j+1]+count[j-nr_w-2]+count[j-1-nr_w-2]+count[j+1-nr_w-2]+count[j+nr_w+2]+count[j-1+nr_w+2]+ count[j+1+nr_w+2])/9,i++; }

//结果存入bitmap[]中

for (i = 0; i

bitmap[i]=new_color[i];

// 打开一个以输出文件名命名的文件,设为可写的二进制形式

fpnew = fopen(“test_lynoise.bmp”, “wb+”);

//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:

fwrite(hdr->signature, 2, 1, fpnew); fwrite(&hdr->size, 4, 1, fpnew); fwrite(hdr->reserved, 4, 1, fpnew); fwrite(&hdr->offset, 4, 1, fpnew); fwrite(&hdr->hdr_size, 4, 1, fpnew); fwrite(&hdr->width, 4, 1, fpnew); fwrite(&hdr->height, 4, 1, fpnew); fwrite(&hdr->nr_planes, 2, 1, fpnew); fwrite(&hdr->bits_per_pixel, 2, 1, fpnew); fwrite(&hdr->compress_type, 4, 1, fpnew); fwrite(&hdr->data_size, 4, 1, fpnew); fwrite(&hdr->resol_hori, 4, 1, fpnew); fwrite(&hdr->resol_vert, 4, 1, fpnew); fwrite(&hdr->nr_colors, 4, 1, fpnew); fwrite(&hdr->important_color, 4, 1, fpnew); if (hdr->offset>54)

fwrite(hdr->info, (hdr->offset54), 1, fpnew);

//直方图均衡化的数据(bitmap)赋值 fwrite(bitmap, nr_pixels, 1, fpnew); //关闭

fclose(fpnew); //释放内存(优化程序必需) free(hdr); free(bitmap); free(new_color); free(count); return 0;

得出实验结果图像后,比较这两种方法去噪的效果好坏,并分析具体原因。

通过比较,邻域平均法在降低噪声的同时,会使图像产生模糊;中值滤波在降低噪声的同时,能够较好的保持图像边缘,不过我感觉有点水粉画的效果,让图像有点失真。

完成上述工作后,使用程序进行验证分析:使用邻域平均法时,3×3和5×5模板大小对图像进行处理的效果有何差别?并分析原因。

程序及源代码都放在文件夹中,不放进报告了。上面是对比图,显然5×5模板比3×3模版模糊,因为使用邻域平均法时,模版尺寸越大,则图像模糊程度越大。

六、心得体会

这次实验是对两种去噪方法的比较。而在书本中,我们已经看过两种去噪方法的效果了,通过上机验证,果然如此。

在编写代码中,我把算法设计的比较繁琐,因为图像每一个像素的信息是由一维数组bitmap记录的,所以在算均值与中值时花了很大的力气。主要是添补周围一圈的图像比较繁琐,还有就是在一维数组中找模版中心和模版中的其他点。虽然我觉得用二维数组会使算法比较简单,但是我忘了二维数组如何动态分配空间,所以只能硬着头皮用一维数组做。

数字图像处理_平均滤波与中值滤波(含MATLAB代码)[小编推荐 篇3

数字图像处理实验二

15生医

一、实验内容

产生教材104页题图4.18(右图)所示的二值图像(白为1,黑为0),编程实现习题4.18所要求的处理(3x3的平均滤波和中值滤波)功能(图像四周边界不考虑,处理结果按四舍五入仍取0或1),显示处理前后的图像,比较其异同。

二、运行环境 MATLAB R2014a

三、运行结果及分析

1、 四种不同的窗的3x3平均滤波

4邻域平均滤波后图像8邻域平均滤波后图像4邻域加权平均滤波后图像8邻域加权平均滤波后图像

①在MATLAB图形窗界面进行放大可以看出四者之间的差别: 4领域与8邻域之间没有明显差别,但是加权与未加权之间的差别较为明显,体现在:加权后每个矩形块的四个尖角部分都被保留了下来(图像四周边界不考虑),而未加权的尖角处黑色变为白色。 ②原因分析:

加权后尖角处原来白色的点(1)进行计算3/5=0.6四舍五入后值为1,保持白色,原来黑色的点(0)进行计算2/5=0.4四舍五入后值为0,保持黑色;而未加权尖角处无论原来是黑色还是白色,进行计算2/4=0.5四舍五入后值为1,所以原先的黑色(0)也变成了白色(1)。 ③下图为放大后的截图:

2、 中值滤波与原图像的对比 原图像中值滤波后图像

①在MATLAB图形窗界面进行放大后可观察出:

使用3x3方形中值滤波模板的效果与4领域、8领域加权平均滤波的效果相同,每个矩形块的四个尖角部分都被保留了下来(图像四周边界不考虑)。 ②原因分析:

套用3x3方形中值滤波模板后,尖角处原来白色的点(1)在窗内1多于0,取中值后仍保持白色,原来黑色的点(0)在窗内0多于1,取中值后仍保持白色。 ③下图为放大后的截图:

四、心得体会

通过MATLAB编程更加理解了课后题的计算结果,直观地看出了黑白像素点灰度值变化前后的取值异同。同时,对MATLAB实现像素点灰度值的替换机理也有所掌握,比如后边附的程序中会提到的“%”标注的思考。

五、具体程序

% 生成黑白块图像

unit=zeros(64,64); f=zeros(256,256); for i=1:1:32 for j=1:1:32 unit(i,j)=1; % 1/4白块 end end for i=33:1:64 for j=33:1:64 unit(i,j)=1; % 1/4白块 end end for i=1:64:256 for j=1:64:256 f(i:i+63,j:j+63)=unit; end end

% 对原图像进行3x3平均滤波 for i=2:1:255 for j=2:1:255 fave4(i,j)=(f(i-1,j)+f(i+1,j)+f(i,j-1)+f(i,j+1))/4;

fave8(i,j)=(f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)+f(i,j-1)+f(i,j+1)+f(i+1,j-1)+f(i+1,j)+f(i+1,j+1))/8;

fave4_weighted(i,j)=(f(i-1,j)+f(i+1,j)+f(i,j-1)+f(i,j+1)+f(i,j))/5;

fave8_weighted(i,j)=(f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)+f(i,j-1)+f(i,j+1)+f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)+f(i,j))/9; end end fave4=round(fave4); % 平均后灰度值有可能是小数,要取整 fave8=round(fave8); fave4_weighted =round(fave4_weighted); fave8_weighted =round(fave8_weighted); subplot(2,2,1); imshow(fave4); title('4邻域平均滤波后图像'); subplot(2,2,2); imshow(fave8); title('8邻域平均滤波后图像') subplot(2,2,3); imshow(fave4_weighted); title('4邻域加权平均滤波后图像') subplot(2,2,4); imshow(fave8_weighted); title('8邻域加权平均滤波后图像')

4邻域平均滤波后图像8邻域平均滤波后图像4邻域加权平均滤波后图像8邻域加权平均滤波后图像

% 对原图像进行3x3方形中值滤波 for i=2:1:255 for j=2:1:255

a=[f(i-1,j-1),f(i-1,j),f(i-1,j+1),f(i,j-1),f(i,j),f(i,j+1),f(i+1,j-1),f(i+1,j),f(i+1,j+1)]; b=sort(a); % 排序函数

fmid(i,j)=b(5); % 9个数排序的中值 end end subplot(1,2,1); imshow(f); title('原图像'); subplot(1,2,2); imshow(fmid); title('中值滤波后图像')

原图像中值滤波后图像

滤波电路教案 篇4

课题:电容滤波

滤波电路

滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器,或与负载串联电感器,滤波是指当流过电感的电流变化时,电感线圈中产生的感生电动势将阻止电流的变化。 老师:滤波电路的作用是什么?

学生:叫脉动直流中的交流滤除,减少交流成分,增加直流成分经过整流后,输出电压在方向上没有改变,但输出电压起伏很大,这样的直流电源如作为电子设备的电源大都会产生不良影响,甚至不能工作。为了改善输出电压的脉动性,必须采用滤波电路。

老师:滤波电路的作用是什么?

学生:叫脉动直流中的交流滤除,减少交流成分,增加直流成分。

经过整流后,输出电压在方向上没有改变,但输出电压起伏很大,这样的直流电源如作为电子设备的电源大都会产生不良影响,甚至不能工作。为了改善输出电压的脉动性,必须采用滤波电路。

课型:讲练结合 一.课程知识:

1、 理解滤波的概念,了解常用滤波方式

2、 理解电容滤波的工作原理,熟练掌握其相应的计算、

二、课程任务

1、滤波电路的电路分析

2、电容滤波电路的工作原理

三、教学重难点

重点:滤波电路原理,滤波电路特点 难点:滤波电路工作原理

四:知识回顾

1、

2、 二极管的特性 电容的特性

五、教学过程

引子:上一堂课我们讲诉了整流电路及其工作原理, 大家发现其作用是吧交流电转变成脉动的直流电。而我要所需要的波形是比较平滑的直流电 这又改怎么获取呢。 当变压器次级U2从第一个正半周开始上升时,VD由于单向导电性,正偏、二极管导通。此时电流流过C和RL ,说明U2两端电压加在了RL和C上,当RL工作时因为电容C是一个储能元件,此时C处于充电状态,而VD的导通内阻是非常小的 所以C的充电时间会很短 充电就很快。会使得UC跟随U2同时上升到峰值。

当U2从峰值开始下降时,电容C的电压不能突变将出现UC>U2的情况,此时VD由于单向导电性处于截止状态,负载要工作 就必须有电容C充当电源,此时电容对RL放电。而电容放电的时间很长 在电量还没放完之前 下一个周期的脉冲就会到来。所以UC会按指数规律缓慢下降。

直到下一个周期的正半周的到来 二极管会再次导通。但是要注意的是,U2开始上升 必须上升到大于电容电压UC VD才会再次导通,此时电容又被U2充电到下一个周期。这样的过程反复进行就得到一个比较平滑的波形。

桥式整流滤波电路原理与之相同,只是在电压U2的一个周期内导通两次,电容充放电两次,输出波形更加平滑。 主要特点:

1、 输出电压波形连续且平滑。

2、 输出电压的平均值U0提高

3、 整流二极管的导通时间比没接电容时缩短。

4、 如果电容容量大,充电时间的充电电流比较大,则电容容量按以下公式计算

C>(3—5)1|2RL

5、 输出电压U0受负载变化影响大。

课堂小结:

了解了滤波电路的电路结构,掌握了电容滤波电路的工作原理,熟记了电容滤波电路的主要特点。 清楚了滤波电路的分类

老师:常见的滤波电路有哪几种?

学生:电容滤波、电感滤波、LC π型滤波 为之后学习相关内容做下了良好的铺垫。

浅谈 中值滤波 篇5

浅谈中值滤波

1、中值滤波的现状

在数字信号处理和数字图像处理的早期研究中,线性滤波是主要的处理手段。线性滤波简单的数学表达式以及某些理想特性使其很容易设计和实现。然而,当信号中含有非叠加性噪声时,例如非线性引起的噪声或非高斯噪声等,线性滤波的处理效果就很难令人满意。在处理图像时,线性滤波将破坏边缘,而且不能有效滤除脉冲噪声。为了克服线性滤波方法的局限性,研究非线性滤波的方法为数字信号处理重要课题之一。

非线性滤波基于对输入信号序列的一种非线性映射关系,常可把某一特定的噪声近似映射为零而保留信号的重要特征,因而可以在一定程度上克服线性滤波的不足。

1971年著名学者J.W.Tukey在他的开拓性论文中提出了中值滤波的概念并用作时间序列平滑。中值滤波一出现就因其具有对尖脉冲的良好抑制能力,在平滑加性噪声时能保持信号的边缘特征等优点而备受瞩目。

常用的中值滤波是非线性滤波的代表,由于经典的中值滤波算法在滤除噪声的同时会使信号中重要的细节信息受损,因此,许多改进的中值滤波算法相继被提出。 2.中值滤波

在数据处理中我们经常使用的是滑动中值滤波,即取定中值滤波的跨度N(一般 N 为奇数),在数据序列中顺次取得 N 个数据,然后将该数据列的中值作为中心位置的值输出以形成新的数据序列,在滤波中应将原数据序列的两个边界各补充(N-1)/2(N为奇数时)个等于边界的点以使滤波后的新数据序列长度与原始的数据序列长度一致。 2.1一般中值滤波

2.1.1一般中值滤波的基本原理

设有一个序列:x1,x2,x3,x4,x5 ,将它们按照绝对值大小重新排列此序列

x3, x5,x2, x4,x1

重排以后的中值是x2,此值就作为滤波的输出。显然,x2不能表示成输入数据和滤波系数的褶积的线性组合。其主要特点有: (1)一般中值滤波绝对阻止噪声峰值,因为中值滤波只取中位数,绝对不会取异常数。例如有一组数 (x1,x2,x3,x4,x5) 正常数 − a≤xn≤a, n=2,3,4,5 异常数 x1>>a a 表示一个数,将以上数组自小到大排列后为 (x3, x5,x2, x4,x1 )取中位数x2,决不会取异常数x1。

(2)一般中值滤波是低通滤波器,中值滤波取中值为序列的输出,可以看作是对数据序列进行局部平滑,这种局部平滑实质就是低通滤波。

(3)一般中值滤波不改变阶越函数在空间、时间上的位置,这一性质对于信号处理中的保护边缘有着重要的作用。

(4)当中值滤波的滤波窗口足够长时,有限宽度的三角波和矩形波可以被完全平滑。

(5)中值滤波由于没有统计效应,对随机出现的小的振幅值有时不能完全平滑,所以通常信号在中值滤波处理以后需要再进行带通滤波。 2.1.2一般中值滤波(MF)的数学基础

中值滤波对数字序列有平滑作用,平滑也就是数据逼近,这样则存在误差,如何利用误差最小来确定平滑参数,一般常见的有两种准则:(1)使误差的平方和达到最小;(2)使误差的绝对值和达到最小。平均值平滑的数学原理应用准则(1),即符合误差的平方和最小。中值滤波则是利用准则(2)来实现对数据序列的平滑。

设x是 n 个数据序列的中位数,xi 表示一组序列。x与xi之差的绝对值和为:

Qxxi (3.1.1)

i1n要使Q最小,则

Q0 (3.1.2) xnnxxiQn2即 (xxi)Sign(xxi)0 xxi1i1xxii1式中:Sign——符号函数。

当xi>x 时,Sign 为负; 当xi

这样在选择x时,使得在 n 个数中,有 n/2 个xi大于x,同样有 n/2 个xi小于x,中间的xi即为x;如果 n 为偶数,则取中间的两个xi的平均值为x。 2.2 加权中值滤波

2.2.1 加权中值滤波(WM)的基本原理

由上可以看出通过改变加权系数,完全可以改变中值滤波的性质,来达到我们的要求。

2.3 一维中值滤波对信号作用的结果分析

由于中值滤波是一种特殊的非线性滤波手段,它对脉冲的响应为零,(在一个输入上施加一个脉冲函数引起的时间响应。)所以在傅氏域没有“真正的”振幅谱和相位谱。我们只能通过它对已知信号及其频谱特征的响应来分析其各种滤波特性。虽然中值滤波的理论比较完善,但是由于多数情况处理的信号是对称信号,所以并没有人注意到中值滤波对信号相位的影响。

2.3.1一般中值滤波对对称信号相位的影响

(1)在频谱图中,一般中值滤波引入了假高频成分,并且在子波的频带范围内,滤波后子波的主要频带向低频方向移动,此特点在数据处理时应该着重注意,要根据数据处理时的具体要求来判断,同时也成为选择滤波长度的一个条件。

(2)经过一般中值滤波后对称信号的相位不发生移动,这使得我们在处理由对称信号(例如雷克子波、奥姆斯比子波等)作为子波的合成地震记录时,不需要考虑相移问题。但由此就得出结论说中值滤波处理后的所有类型的信号的相位都不发生移动则是片面甚至错误的。 2.3.2 一般中值滤波对非对称信号相位的影响

一般中值滤波对非对称信号的处理效果不同于处理对称信号,如果 用处理对称信号的规律来对待非对称信号则往往不能达到预期的效果。对应滤波后的频谱同样向低频方向移动,但假高频现象却并不如对称信号滤波后明显。处理非对称信号的同时必须注意选择的滤波点数是否使相位的改变在要求的范围内。从滤波后和滤波前的最大振幅平方比来看滤波前后的能量变化,发现在同等情况下,一般中值滤波对非对称信号的衰减能力大于对对称信号的衰减。 2.3.3 加权中值滤波对对称信号相位的影响

(1)在频谱图中,加权中值滤波也引入了假高频成分;并且滤波后的子波的主要频带向低频方向移动,说明了加权中值滤波的低通滤波特性。

(2) 同样加权中值滤波对对称信号的相位不产生影响。 2.3.4 加权中值滤波对非对称信号相位的影响

当滤波长度大于一定的子波宽度时,波形已经失去了原有的形态,但是在波形失去原有形态之前,经过加权中值滤波后的子波表现出较好的分辨率特性;在频谱上加权中值滤波仍然表现出低通特性;信号的相位也因滤波而产生了畸变。

2.3.5 一般、加权中值滤波对不同信号作用的比较 一般中值滤波和加权中值滤波对于同一种信号表现出相似的特性:二者在处理对称信号时,都起到了衰减的作用,并且对信号的相位都不产生影响,同时使信号的频谱中掺入了假高频成分,还表现出了中值滤波的低通特性;在处理非对称信号时,除了对信号产生衰减作用外,还使信号的相位发生了畸变。

尽管一般和加权中值滤波有相似之处,但是它们还是存在着较大的差异:

在处理对称信号时,一般和加权中值滤波分别对同一信号进行滤波以后,信号的峰值很接近,但是加权中值滤波比一般中值滤波更有利于提高信号的分辨率,在频谱上加权中值滤波比一般中值滤波表现出更加严重的假高频现象。

在处理非对称信号时,加权中值滤波比一般中值滤波表现出的更好的提高分辨率的性质。而在相位谱分析中,尽管加权和一般中值滤波都使信号的相位发生改变,但是在滤波长度较小的情况下,经过一般中值滤波得到的信号的相位曲线虽然已经发生改变,但是仍然与原始信号的相位曲线有相同的趋势,并没有偏离太多;而此时即使在滤波长度较小的情况下,经过加权中值滤波得到的信号的相位曲线已经变得不可辨认了。

经过以上的讨论,我们可以认识到在实际地震资料的处理中,应用中值滤波除了应该考虑信噪比和分辨率以外,更加不容忽视的就是信号的相移问题,这对于资料的可信度起着至关重要的作用。 由于在实际中,经常用到的一维中值滤波是不加权的,所以常常把一维不加权中值滤波简说成一般中值滤波,但是随着对处理手段的进一步要求,加权中值滤波的地位日益突出,并且毕竟不加权的情况只是一种特殊的加权中值滤波,所以一般中值滤波的概念也应该扩充为加权中值滤波。

通过对两种不同加权中值滤波(一般、加实数权)的讨论,总结出了一些关于一维中值滤波方面的经验:

(1) 通过不同权系数的选取,中值滤波表现出不同的特性,我们可以根据对实际情况的分析来选取不同的权系数以适应各自的需要。

(2) 本次只是选取了两种特殊的权系数来分析,而在实际中存在着更多的权系数的选取方法,但是不管权系数的形式如何,都可以仿照本文的方法加以研究。

(3) 虽然中值滤波可以满足一定的要求,但是我们同时也应该注意到它们存在的问题:①中值滤波会引起信号形态上的畸变,而且畸变程度和滤波长度有关;②中值滤波会引入假高频,因此信号在经过中值滤波后可以根据情况做一次低通滤波;③中值滤波对非对称信号进行处理时,会引起相位畸变,因此在使用中值滤波之前应该试验相位畸变是否在处理的允许的范围内;④虽然选取适当的权系数后,加权中值滤波可以使信号提高分辨率,但是同时带来“小台阶”效应,因此经过加权中值滤波处理后的信号推荐做一次平滑处理。

由于中值滤波是一类特殊的滤波方法,因此我们利用它进行信号处理时应该格外注意。为了得到预期的效果,处理之前做一下试验以确定最佳的滤波长度是非常必要的。 3中值滤波在地震资料处理中的应用 3.1中值滤波在井间地震资料处理中的应用

中值滤波是一种简便有效且信号失真较小的信号处理方法。在不同的道集域下,井间地震资料中的直达波、一次反射波和多次反射波在相邻道间的时差具有不同的表现形式,利用这一特点,应用中值滤波在不同道集域内对井间地震资料进行滤波处理,可以得到很好的效果。

对于井间地震资料,我们所需要的有效反射波是来自于激发点与接收点下方的一次反射波(上行反射)和来自于激发点与接收点上方的一次反射波(下行反射),其它波均视为相关干扰或无效信息。中值滤波是以正常时差不同为基础的多道滤波技术,在井间地震特殊的观测系统中,中值滤波可以发挥其自身的优点。

通过对井间地震不同道集域下道间时差的分析可以知道,仅运用中值滤波即可达到较好的波场分离效果。为了验证不同道集域下中值滤波对数据处理的效果,进行直达波与多次波的衰减、一次反射波的增强以及上下行波场的分离。 3.1.1直达波和多次波的衰减

首先对数据进行带通滤波,消除有效频带之外的噪音干扰,将共炮点道集重排为共偏移距道集。在共偏移距道集下,根据(1)式和(3)式可知,直达波和多次波除了受速度影响外,其相邻道间时差为0,通过共偏移距道集对初至时间拉平排齐,在一定程度上消除了速度的影响,然后选择适当的时窗参数,采用中值滤波消除相邻道时差为0的波组记录,使直达波和多次反射波得到衰减。 3.1.2反射波的增强

把衰减了直达波和多次波的数据体重新抽道组成共中心点道集,对于共中心点道集,由于△s=-△g,根据(2)式可知,一次反射波在不受速度影响的情况下其相邻道间的时差为0,通过共中心点道集对反射波时间拉平排齐,消除速度的影响,再次做中值滤波处理,本次中值滤波是为了保留相邻道时差为0的波组记录,而相邻道时差不为0的波组记录将被减弱,因而一次反射波同相轴得以增强,而其它 波场(如直达波和多次波)再次得到衰减(图4,虚线圈)。 3.1.3上、下行波场的分离

首先对上行反射波进行拉平(图5中的②),然后通过中值滤波使上行反射增强而下行反射减弱(图5中的③),最后返回原始时间剖面得到上行反射波场(图5中的④);反之,得到下行反射波场(图5中的⑤)。图6为通过中值滤波最终获得的上行和下行反射波场。

在波场分离中,对于资料相对较好的地震数据,仅应用中值滤波即可达到较好的波场分离效果;对于信噪比较低的资料,可以用中值滤波技术使资料的有效波场加强,并得到上、下行反射信息,然后再利用中值滤波进行波场分离。

井间观测系统所具有的特殊性,使得同一种地震波在不同道集域下的时差表现形式不同,因此可以在井间地震处理中利用中值滤波技术实现直达波和多次波的衰减,反射波的增强以及上、下行反射波的分离。同时,由于中值滤波处理对地震原始资料畸变程度较小,因此可以提高井间地震资料反射成像的质量。 3.2多道中值滤波在分离VSP波场中的应用?

多道中值滤波处理流程图

4、中值滤波特点

中值滤波是一个非线性过程,最大优点是算法简单且去噪效果明显。中值滤波具有 如下特点: (1)中值滤波绝对阻止噪声峰值。

(2)中值滤波不改变阶跃函数在空间、时间上的位置。 (3)消除尖峰波以及增强部分有效波;

(4)对野外原始地震资料信息的畸变和负面影响较小等优点。 (5)中值滤波平滑三角波,其平滑作用随着中值滤波长度N的增加而增加,当其达到一定长度时,可将三角波平滑为具有相等幅度的理想的直流分量。

(4)中值滤波平滑矩形波,若中值滤波足够长时,矩形波被完全平滑。

(6)中值滤波由于沒有像计算均值那样的统计效应,对随机出现的小的振幅值有时不能完全平滑。中值滤波实际上是一个平滑滤波,经过其处理之后,主频向低频移动,高频成分受到损害,正是由于其平滑作用,使处理后的地震数据波形过于一致而显呆板,有一些信息不可能客观反映出来。

5、总结

中值滤波器是一种特殊的非线性滤波器,与线性滤波器不同。线性滤波器的振幅、相位谱完全决定了滤波器在频率域和时间域的特征。与之相比,中值滤波器对脉冲的响应是零,在频率域没有“真正”的振幅谱和相位谱。所以,尽管中值滤波器原理很简单,但了解其特性比了解线性滤波器特性要困难得多。

虽然中值滤波技术在信号处理领域得到很大的重视,特别在非平稳信号的处理中取得了较大的成功,然而中值滤波的一个严重不足是引起相对滤波窗口而言较为“细小”的信号细节结构的破坏和丢失,在图象处理中,中值滤波的这一缺憾要比在一维信号的处理中更加显著。原因主要来自两个方面:

第一,二维信号几乎没有根信号,也就是说几乎所有的二维信号经中值滤波以后都要受到不同程度的破坏;

第二,图象中的某些诸如细线,拐角等细节结构往往包含重要的信息,这些结构的破坏或丢失往往比噪声本身更为不可接受。 所以,保护细节的中值类滤波器的研究成为非线性滤波器研究的一个重要方面。多级中值滤波则正是人们在努力寻求的兼有细节保护和噪声抑制的优良特性的滤波器结构。研究表明,长度较小的窗口能够较好地保护信号的细节信息,但却不能有效地滤除随机噪声;而长度较大的滑动窗口能更好地抑制噪声,同时却严重地损失重要信息。根据噪声性质自动改变滤波窗口长度的滑动加权中值滤波器,更好地适应去噪的需求。

一键复制全文保存为WORD