圆柱体
1.圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。
2.圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱体的高。
3.圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形、正方形或平行四边形(斜着切)。
圆柱的侧面积=底面周长x高,即:
S侧面积=Ch=2πrh;
底面周长C=2πr=πd;
圆柱的。表面积=侧面积+底面积x2=Ch+2πr^2=2πr(r+h)。
4.圆柱的体积=底面积x高
即V=S底面积×h=(π×r×r)h。
5.等底等高的圆柱的体积是圆锥的3倍
6.圆柱体可以用一个平行四边形围成
7.圆柱的表面积=侧面积+底面积x2
8.把圆柱沿底面直径分成两个同样的部分,每一个部分叫半圆柱。这时与原来的圆柱比较,表面积=πr(r+h)+2rh、体积是原来的一半。
9.圆柱的轴截面是直径x高的长方形,横截面是与底面相同的圆。
立体图形体积公式
长方体:V=abc(长方体体积=长×宽×高);
正方体:V=a×a×a(正方体体积=棱长×棱长×棱长);
圆锥体:V=1/3sh(圆锥体体积=1/3底面积×高)。
在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。
圆柱的性质
(1)圆柱的轴过两个底面的圆心,并且垂直于两个底面;
(2)用垂直于圆柱的轴的。平面去截圆柱,所得的截面是和底面相等圆;
(3)用一个过圆柱的轴的平面去截圆柱,所得截面是一个长方形,其中有两条对边是圆柱的两条母线,另外两条对边分别是两个底面圆的直径,如图中,ABCD是长方形,AB、CD、是母线,AD、BC分别是上下底面的直径;
(4)用一个平行于圆柱的轴的平面去截圆柱,所得的平面是个长方形,其中有两条对边是圆柱的两条母线,另外两条对边分别是两个底面圆的弦,如图中长方形ABCD是平行于轴的平面,AB、CD是母线,AD、BC分别是两个底面圆的弦。
如何计算圆柱体积:
求圆基的半径。两个圆都会做,因为它们大小相同。如果你已经知道半径,你可以继续前进。如果你不知道半径,那么你可以用尺子测量圆的最宽部分,然后除以2。这将比测量直径的一半更准确。我们说,这个圆筒的半径是1英寸(2.5厘米)。把它写下来。如果你知道这个圆的直径,就把它分成2个。如果你知道周长,然后除以2π得到半径。
计算圆形基的面积。要做到这一点,只是用公式求圆的面积,πR2=。只要把你找到的半径插进去就可以了。这里是如何做到这一点:aπx12==πx1。因为π约3.14到三的`数字,你可以说,圆形底座的面积是3.14。2
找到圆柱体的高度。如果你已经知道高度了,继续前进。如果没有,用尺子量一下。高度是两个基棱之间的距离。比方说,圆柱体的高度是4英寸(10.2厘米)。把它写下来。
把基础的面积乘以高度。你可以把圆柱体的体积看作是圆柱体的面积在圆柱的整个高度上延伸的体积。因为你知道基的面积是3.14的2,高度是4,你可以把两者相乘,得到圆柱体的体积。3.14英寸,2英寸,4英寸。这是你最后的答案。总是以立方单位陈述你的最终答案,因为体积是三维空间的量度。
圆柱的定义和分类
圆柱是由两个大小相等、相互平行的圆形(底面)以及连接两个底面的一个曲面(侧面)围成的几何体。两个底面之间的距离叫做圆柱的高。当圆柱的轴与圆柱的。底面垂直时,称该圆柱为直圆柱;当圆柱的轴与圆柱底面不垂直时,称该圆柱为斜圆柱。
以上就是圆柱体积公式。等底等高的圆锥与圆柱,圆锥体积是圆柱体积的三分之一,因此掌握圆柱体积公式对圆锥的学习也很重要。
(一)
学案---回忆:长方体的体积怎样计算?圆的面积计算公式是怎样推导出来的呢?重点研究区域:圆柱体的体积怎样计算?
上课时,学案部分学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,高迈把手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的“风头”都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是“压一压”他的积极性。“给大家留一点思考的时间,等一会再说你的方法”,谁知道这个“积极分子”不容我把话说完,()已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?),:我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片,分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的体积有什么关系啊?“有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的。个数。”这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。这个时候我用课件利用动画让学生又重温了以上过程。
整个课堂生动、活泼,学生思维活跃,在动、论、看等过程中学生轻松的掌握了圆柱体积公式。