小学奥数题及答案(4篇)

1。三边均为整数,且最长边为11的三角形有多少个?下面是的小编为您带来的小学奥数题及答案(4篇),在大家参照的同时,也可以分享一下给您最好的朋友。

小学五年级行程问题奥数题及答案 篇1

张工程师每天早上8点准时被司机从家接到厂里。一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了√★√剩下的路程,到厂时提前20分钟。这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前_________分钟。

答案解析:

第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。

这道题重要是要求出汽车速度与工程师的速度之比。

小学五年级行程问题奥数题及答案 篇2

行程问题:

有的母牛比一般人具有更健全的头脑,"有一位农夫就曾这样认为,"瞧!有一天我的那头老家伙,有着斑纹的母牛正站在距离桥梁中心点5英尺远的地方,平静地注视着河水发呆,突然,他发现一列特别快车以每小时90英里的速度向它奔驰而来,此时,火车已经到达靠近母牛一端的'桥头附近,只有两座桥长的距离了。母牛毫不犹豫,马上不失时机地迎着飞奔而来的火车作了一次猛烈冲刺,终于得救了。此时距离火车头只剩1英尺了,如果母牛按照人的本能,以同样的速度离开火车逃跑,那么母牛的屁股将有3英寸要留在桥上!"试问:桥梁的长度是多少?这只母牛狂奔的速度是多少?(1英尺=12英寸)

行程问题答案:

观察可知,老母牛一开始在火车的中心的左端。在相遇过程中,火车走了:2个桥长-1英尺;母牛走了:0.5个桥长-5英尺;在追及过程中:火车走了:3个桥长-0.25英尺;母牛走了:0.5个桥长+4.75英尺。则在相遇和追及过程中:火车共走了5个桥长-1.25英尺;同样的时间,母牛走了1个桥长-0.25英尺。所以火车的速度是母牛狂奔时的5倍。母牛的速度为90÷5=18英里/小时。又根据2个桥长-1英尺=2.5个桥长-25英尺所以0.5个桥长=24英尺。1个桥长=48英尺。

小学五年级行程问题奥数题及答案 篇3

甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?

答案与解析:

甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。而甲行走45分钟,乙行走45分钟也能走完一圈。所以甲行走25分钟的路程相当于乙行走45分钟的路程。甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。即乙走一圈的时间是126分钟。

小学五年级行程问题奥数题及答案 篇4

A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行行42千米,一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去,这样一直飞,燕子飞了多少千米,两车才能相遇?

考点:相遇问题.

分析:要求燕子飞了多少千米,就要知道燕子飞行所用的时间和燕子的速度,燕子的速度是每小时50千米,关键的问题是求出燕子飞行所用的时间,燕子飞行的时间就是甲乙两车的相遇时间,甲乙两车的相遇时间是400÷(38+42)=5(小时),求燕子飞了多少千米,列式为50×5,计算即可.

解答:解:燕子飞行的时间就是甲乙两车的相遇时间,即:

400÷(38+42),

=400÷80,

=5(小时);

燕子飞行的距离:

50×5=250(千米);

答:燕子飞了250千米两车才能相遇。

点评:本题解题的关键是要知道燕子飞行的时间就是甲乙两车的相遇时间,同时考查了下列关系式:总路程÷速度和=相遇时间、速度×时间=路程。

一键复制全文保存为WORD