数学学习计划优秀8篇

在平凡的学习生活中,大家最熟悉的就是知识点吧?知识点是指某个模块知识的重点、核心内容、关键部分。为了帮助大家掌握重要知识点,的小编精心为您带来了数学学习计划优秀8篇,希望能够帮助到大家。

数学知识点总结 篇1

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

三、整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

五、同底数幂的乘法

1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n=am﹒an。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

六、幂的乘方

1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。

3、此法则也可以逆用,即:amn=(am)n=(an)m。

七、积的乘方

1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

3、此法则也可以逆用,即:anbn=(ab)n。

八、三种“幂的运算法则”异同点

1、共同点:

(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法则仍然成立。

2、不同点:

(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

九、同底数幂的除法

1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

2、此法则也可以逆用,即:am-n=am÷an(a≠0)。

十、零指数幂

1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

十一、负指数幂

1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

十二、整式的乘法

(一)单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘

1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

初中数学知识点总结 篇2

有理数:

①整数→正整数/0/负整数

②分数→正分数/负分数

数轴:

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:

①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:

加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:

①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:

①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

数学知识点总结 篇3

1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

数学学习计划 篇4

1. 建立初中数学知识体系。

初中进行了29章知识的学习,所有章节的知识在中考都会有涉及到。中考的考察方式不会利用一道题目单一考察某一个知识点,考察多个知识点时也不会明确体现会利用哪些学过的知识来进行解答。如何很好的解决这样的问题,那就是在初三的学习过程中去建立一个完整的知识体系出来。不仅仅是要构建出所学过的知识框架,更要建立起相应知识点之间的联系。

2. 归纳总结题型。

初三的学习科目众多,依靠作业进行知识巩固的效率过低。尤其是数学,题目多种多样。及时的进行题型的归纳总结,发现题目之间的共性,发掘同一类型题目的统一解答方法和思想,可以很好的提高学习效率。例如与等腰三角形有关的全等,可以归结为四种题型。

3. 提高知识综合运用能力。

初三的学生要面临的不只是一年后的中考,上学期期末进行的元月调考,下学期期中进行的四月调考和五月调考,都是阶段性的重要考试。提前进行真题的练习,适应综合性题目的解答思路,这样才可以在这些考试中取得优异的成绩。

第一,重视课本知识:任何科目的学习都万变不离其宗,数学也不例外,数学里面的这个“宗”,就是课本,因为所有的学习知识都来源于课本,考试的内容有些高于课本,但是基础知识点还是不会变化的,考试的试题就是课本知识的衍生物,要一点一点去挖掘试题背后的东西,找到其中要考试的重点是哪部分。所以课本还是不能丢的,不能一味地去做一些试题而忽略了课本这个根本。尤其是在学习新知识的时候,须要合同将课本的知识点和例题弄明白,书后的每个练习都要认真地做一遍,这样才能说我们基本掌握了这一部分知识。

在暑假相信很多同学都会对将要学习的知识进行预习。有很多同学在对数学进行预习的时候有一个误区,就是认为我把书看了就是预习了,我觉得只有在看书的基础之上能够将课本上每节的配套练习解决才算真正的预习,因为数学知识的掌握情况终还是得体现在解题中。

第二,要学会正确地纠错:在学习数学的过程中,每个人都会犯错,出现错误是正常的,并不可怕,可怕的是很多同学一错再错,这里面就涉及正确纠错的问题。暑假的时间相对充裕,正是我们纠错的好时机。但是数学的改错不是简单地用红笔把得数改正就可以的。正确的纠错应该是首先搞清楚自己到底错在哪里,是自己对题目的分析有问题还是运算过程中出现了错误,其次大家要把自己的错误记在心里,时时强化自己的记忆,纠正头脑中的错误观念。如果条件允许,家长能够把孩子每天犯的错误单独抄在一个本上定期让孩子再重新做一遍,会收到更好的效果。

第三,做好总结:学习之后的总结是学习的一个重要环节,进行总结是对知识进行升华的过程。很多同学也知道要进行总结,但是需要总结什么很多人并不清楚,在这里建议同学们利用暑假时间总结以下几点:

1.总结旧知的知识结构。数学每一章都有一个知识体系,大家应该把这个知识体系总结出来并利用这个知识体系,记忆和掌握数学的各种定理和知识点。

2.总结自己一些容易出现错误的点。大家可以重新回忆自己出现过的错误,看看哪些地方是自己反复出现问题的点,往往反复出现问题的点就是自己的学习漏洞,如果运算有问题就强化运算能力,如果是知识有漏洞就把知识再回顾一遍,并适当地配合着知识做一些练习。

总之,要想取得良好的学习成绩,持之以恒与良好的学习方法缺一不可,数学也不例外。大家也可以利用暑假总结一些适合自己的学习方法。

数学学习计划 篇5

第一课时:分式

1、理解分式的概念,懂得如何判断哪些是分式?哪些是整式?

2、掌握分式应满足什么条件?

3、掌握分式的基本性质及简单的约分、通分

第二课时:分式的运算

1、掌握分式的乘除法运算法则

2、会进行简单的乘除法分式运算

3、掌握分式的加减法运算法则

4、会根据分式相关法则进行运算

第三课时:整式指数幂

1、掌握基本的整式指数幂的性质

2、会根据性质进行运算

3、会利用性质解决实际应用

第四课时:分式方程

1、理解分式方程的概念

2、掌握化为一元一次方程的分式方程的解法。

3、学会如何检验方程及分式方程的运用

第五课时:复习第十六章所学内容,通过题目掌握分式的基本性质及其相关的运算。第六课时:反比例函数

1、理解反比例函数的意义

2、学习反比例函数的概念

3、掌握反比例函数图象的画法及其性质

第七课时:实际问题与反比例函数

1、会运用反比例函数解决实际问题

第八课时:复习第十七章所学内容,掌握反比例函数图像、性质;

第九课时:勾股定理

1、探索直角三角形的三边关系

2、学习勾股定理

3、会利用勾股定理进行简单的运算

第十课时:勾股定理的逆定理

1、学会利用三边关系判断一个三角形是否为直角三角形

2、会利用勾股定理进行简单的应用

第十一课时:复习第十八章所学内容,掌握勾股定理及其逆定理

第十二课时:平行四边形

1、掌握平行四边形的定义和性质

2、会对平行四边形进行判定

第十三课时:特殊的平行四边形

1、掌握特殊平行四边形的性质

2、会对特殊平行四边形进行判定

第十四课时:平行四边形的应用

1、掌握简单平行四边形的应用

2、掌握简单的特殊平行四边形的应用

第十五课时:梯形

1、掌握梯形的判定和性质

2、掌握等腰梯形的判定、性质和简单应用

第十六课时:复习第十九章所学内容,掌握平行四边形、特殊四边形及梯形、等腰梯形性质与判定

第十七课时:数据描述

1、理解平均数、中位数和众数所表达的含义

2、会求平均数、中位数与方差

3、区别算术平均数与加权平均数之间的联系和区别

第十八课时:全面进行总复习,通过题目的练习和讲解,掌握初二下册基本内容。

数学学习计划 篇6

1、第一阶段复习计划:

复习高数书上册第一章,需要达到以下目标:

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

2、第二阶段复习计划:

复习高数书上册第二章1-3节,需达到以下目标:

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3.了解高阶导数的概念,会求简单函数的高阶导数。

本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

3、第三阶段复习计划:

复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。

3.掌握用洛必达法则求未定式极限的方法。

4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

4、第四阶段复习计划

复习高数书上册第四章 第1-3节。需达到以下目标:

1.理解原函数的概念,理解不定积分的概念。

2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

5、第五阶段复习计划

复习高数书上册第五章第1-3节。达到以下目标:

1.理解定积分的几何意义。

2.掌握定积分的性质及定积分中值定理。

3.掌握定积分换元积分法与定积分广义换元法。

本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

6、第六阶段复习计划

复习高数书上册第五章第4节,第六章第2节。达到以下目标:

1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

2.掌握定积分换元法与定积分广义换元法。 会求分段函数的定积分。

3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

数学知识点归纳总结 篇7

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

初中数学知识点总结 篇8

代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:

①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

一键复制全文保存为WORD