从某件事情上得到收获以后,不妨将其写成一篇心得体会,让自己铭记于心,这样可以帮助我们分析出现问题的原因,从而找出解决问题的办法。那么心得体会到底应该怎么写呢?以下是可爱的小编为家人们找到的高等数学学习心得体会(7篇),欢迎借鉴。
高等数学课程是高等理工科院校普遍开设的一门基础课程,是众多专业的学生进一步学习基础课程和专业课程的基础。但由于高等数学本身具有高度的抽象性和深奥性使教师在授课时出现了诸多不尽人意之处。如何活跃课堂气氛,提高教学质量是高校教育者们值得深思的问题。
一、高等数学教学的现状
1、高等数学课时缩减
当前我国高等教育正逐步正由精英教育逐渐转为大众化教育,为了加强实践教学,高等数学的教学内容有所变动,授课学时在1996年前是220学时左右缩减到现在的160学时左右。虽然减少了应用方面的内容,但每章节数学知识点的体系保持不变。在缩减课时的情况下,教师上课往往出现向前赶的现象,使得课堂讲解不够细致,学生学起来囫囵吞枣,不求甚解。
2、学生数学基础功参差不齐,增加了教学难度
现今高校录取新生的政策,对大多数专业来说基本是看高考全科的总分数,没有顾及数学成绩对学 习后续专业课程的影响,因此往往出现同一专业的学生数学成绩功悬殊较大。针对学生数学基础功参差不齐的情况,如何因人施教,是高校教学工作者值得深思的问题。
3、学习态度和兴趣问题
兴趣是最好的老师,激发学生学习高等数学的兴趣无疑会对教学产生良好的效果。在新环境下对刚入学的大学一年级新生而言,心理和学习方法上都有一个适应过程,高等数学本身所具有的高度抽象性、严谨的逻辑性的特点,往往使初学者望而生畏。再加上校园风气及网络、手机等因素的影响, 导致部分学生出现学习目的不明确,态度不端正等现象。
4、教学方法、教学道具有待改进
传统的高等数学教学往往是按照定义-定理-推论-习题的逻辑顺序展开,课堂上只讲是什么,很少讲为什么,形式化演绎,不是提出问题,而是直接下定义,对于数学问题多半是技能训练性的,通过题海战术,欲使学生掌握题目类型和解题技巧。授课方式一般是一教师、一黑板、一粉笔的枯燥教学,教学方法多是一贯的满堂灌,学生在学习过程中往往处于被动的状态,师生之间的交流比较少,使得课堂气氛通常不够活跃。
二、高等数学课程教学模式改革的举措
1、小班制分层次教学
我国著名的教育学家陶行知曾经说过:培养教育人和种花木一样,首先要认识花木的特点,区别不同情况给以施肥、浇水和培养教育,这叫因材施教。从小学到大学,数学学习经历了一个较长的过程,在这个过程中由于教育资源、学习习惯、个人素质和兴趣等使得大学新生的数学成绩有所差距。对教授大一新生的高等数学教师来说,非常有必要了解学生成绩背后的原因。根据学生专业需求、兴趣不同、基础功强弱等因素,对学生分班级、分层次、分群体选择不同的教师、教学目标和教学方法,实施不同的教学方式,让每个学生都能有所学,有所获。
分层次的方式很多。比如对学生高考成绩进行摸底,通过多元统计软件进行成绩聚类分析,由此将学生大致分成优异、良好、合格三种小班级。成绩优异的学生通常基础功较强,数学思维活跃、善于分析解决问题。在授课时对这类学生要制定较高的教学目标,使学生不仅计算能力有所提高,还要培养高等数学中抽象理论的认知和理解能力。在情况允许的情况下,还可以开展讨论班,抽取教材中理论概念型的题目及和讲授章节相应的考研题目,让同学们讨论,练笔;对成绩合格的同学,在授课时可以相应的减少抽象理论的讲解,首先注重教材中具体计算题目的讲解,使学生能按葫芦画瓢似的解出题目,经过学习上的不断积累,学生必然敢于动手下笔解决问题,进而引起学生的学习兴趣。
在就近(如同寝室,同专业)的。原则下,还可以实施帮扶政策,即让成绩优异的同学帮扶成绩一般的同学。这样一方面锻炼了成绩优异同学的讲解能力,提高成绩一般同学的学习进度和程度,又能促进同学间的交流,易于形成良好的学习氛围。
2、改进教学方法和教学手段
学习数学必须讲究思想方法。通过以思想方法的分析来带动具体数学知识内容的教学,我们即可真正地做到把数学课讲活,讲懂和讲深。
所以教师要更新教育观念,积极主动地采取一些应对政策,优化教学方法和教学手段,使学生由厌学到愿学,成为想学、爱学、会学的人。
除了传统的讲授式教学,教师在课堂教学中还可以用研究式、讨论式、自学指导式等启发教学方法。同时,教师在授课时应注重师生互动。学生对教师提出的问题要有响应,教师和学生之间要有对话和交流。为此在课前教师需要熟悉教学内容,精心设计一些能够启发学生思考的问题,给出一些事例和问题的情境,引导学生通过观察、思考、讨论等途径发现问题解决问题。
有时对部分内容教师还可以设计陷阱教学,一步步将学生引向错误结论方向,当出现矛盾陷入僵局时,教师再因势利导带领学生讨论问题的症结所在。这无疑能引起学生兴趣,调动学生深入思考和独立钻研的积极性,活跃了课堂气氛,甚至能达到举一反三的课堂效果。
另一方面,在教学中要突破黑板二维空间的局限,逐步引入现代化教学手段,课堂教学运用多媒体和数学软件,满足课程在计算机图形、数值计算、数学建模等方面的需求,开发学生的空间想象能力和计算机软件操作运用能力。
在课时缩减的情况下,运用互联网进行辅助教学,指导学生正确适宜地运用网络搜查高等数学的相关资料,自我解惑,提高学生自学能力。还可以建立班级学习交流群,学生可以在群里畅谈对高等数学课程教学的想法和建议,以便教师做出相应的指导和调整。对同学提出的问题,教师可以先鼓励同学间你问他答,锻炼学生自我解惑的能力,再选择性地进行答疑和总结。互联网的运用无疑为课堂教学、课后学习和答疑提供了便利之处。
3、引进师资力量,加强教师交流培训
教师是学习的领路人,只有教师在教书过程中发挥主导作用,引导学生,与学生产生共鸣,才生调动学生的学习积极性。
为保证教学质量,引进教师高学历人才和学科带头人,形成一个高学历、教学经验丰富的教师团体。加强教师对内交流。在数学教研室,定期开展高等数学教学课堂体会和经验交流会,使教师间取长补短,提升教学质量;对新教师实行助教制,通过跟班听取老教师上课、批改作业和辅导学生答疑等,使新教师熟悉教材内容,掌握一定的教学方法和规律。鼓励在职教师继续深造,提供更多机会让教师走出校门,参加学校间的教学研讨会,参加各级教育部门和学术部门举办的各类师资培训班,学习国内外的教学思想、教学方法和教学技术。
4、完善教学考核评价体系
高等数学教学评价一般仅仅局限在一个学期一次期终考试的考核上,这种考核方法造成了学生临时抱佛脚的突击式学习现状,往往不能完全放映出学生的学习态度和真实掌握知识的程度来。加强平时考核力度,变期末一次终结性考试为全过程的行程性考核,实现教学的步步为营,逐步扎实推进,避免学生以一次期末考试决定胜败的情况,为此有必要对考核评价体系做出一些调整。
平时作业和课堂测试能反映出学生对每个章节知识掌握的程度。教师通过审阅,能察觉出学生学习态度、学习习惯、数学悟性等各方面的表现。教师在每次批改时可以都给出,如:A+(优异)、A(良好)、B(合格)、C(未完成)几类相应的评价。在结课之前,根据每个练习和课堂测试情况给出每个学生相应的平时成绩;数学学习是循序渐进的过程,一次缺课漏学的知识可能影响到后面知识点的学习。为保证教学质量教师可以将出勤率作为评价成绩方式之一。可以以班长或团支书为负责人,实行课课记名制,督促和监管学生课堂到位,促进学生学习的主动性,改变平时不努力、考试搞突击的前松后紧的学习不良作风。
在学期末,教师可以平时成绩、出勤率和期终考试以加权的方式给出学生学习高等数学全面的成绩评价。
高等数学课程的改革和创新是个长久的事情。教育工作者们任重而道远。只有在教学过程中不断摸索,不断总结,才能不断完善和创新。
光阴似箭,日月如梭,一转眼,本学期便悄然结束了。回首这一学期的学习情况,给我记忆最深的莫过于上二位刘老师的《高等数学》这门课程了,课程即将结束,但二位老师严谨认真负责和富有人性化的教学,仍然在我的脑海中不时的浮现。
《高等数学》是数学科学的一个重要分支。学好这门学科,不仅使人能了解相关的基础知识和重要内容,从而增强自己解决问题的实际能力,更重要的是它有助于改进我们观察问题、思考问题和处理问题的能力,从而使我们的逻辑思维和思辨能力进一步大大提高,这些,无疑对工科研究生还是文科研究生来说,都是至关重要的,所以自上刘老师的第一节课,我就意识到这门课程的重要性,每次都认真聆听老师的上课,遇到问题及时请教。
二位老师虽然较年轻,但由于她们素质较高,数学功底较深,加之她们富有同情和体贴的教学,故在本学期的这门课程上,学到了许多原来不知道的知识和许多相关的高等数学理论,使我终生难忘,终生受益。例如,我原来根本不知道什么是导数与微分,更不用说它们在实际生活中的'具体应用了。但通过学习过高等数学之后,我不但知道了它们的概念,而且还懂得在日常生活中的具体运用。例如:飞机平稳降落、天气乍寒乍冷、股市迅猛上扬、产值增幅下降、山路越来越陡,这些形容变化的大体情况,我们竟然可以利用高等数学的导数概念来准确刻画这些变量在某一瞬间变化的快慢,也就是确定其变化率,这些都是我原先根本不知道的相关内容。当然,跟二位老师学到的知识,又何止这一点呢,这里我就不在一一列举了。
跟老师学习知识虽然重要,但更重要的是要学会老师的为人和待人处事的品质及其风格,然而二位老师在这方面恰恰是我们的楷模和效仿的典范。由于我们是文科学生出身,原来在数学学习方面,就没有经过很好的训练,就更不用谈学高等数学了,尤其像我这位年龄较大、思维定势受限而且较愚钝的人,学习起来肯定不如年轻人,但二位老师在学习方面从不歧视我,对我所问的每一个问题,不论简单还是复杂,她们都乐意地回答,使我最大程度上的满意。另外,二位老师,在教学期间,从不缺课,上课时,除了认真教课,没有别的任何私心杂念,也从不计较个人得失,默默无闻地耕耘着,春蚕到死丝方尽,蜡炬成灰泪始干,这正是二位老师的深刻写照。
学生回报师恩的最好方式是把学问做好。“为天地立心,为生民立命”超出了我的能力,但“为吾师继其学”是我能够做到的。我将在以后的工作和学习生活当中,把高等数学和其他相关知识学好,已回报我们敬爱的老师…
1、我认为应该讲实数的完备性的六大定理及其证明,在证明这六大定理彼此等价的过程中,肯定对同学们也是数学素质的培养。可能你们认为同学们接受不了,所以应该放弃。我不认为交大的学生会这么差,你们的第18题都有人做得出来,充分说明他们潜质无限,你们还有什么好担心的?而且,没有这六大定理,你怎么证明连续函数的性质?别告诉我连续函数的性质不重要,因为这是常识,是最基础的东西。当然,的确有人无论如何也学不会,但数学本身就不是任何人都可以玩的游戏,就像篮球一样,不是每个人都有姚明的天赋。
2、函数项级数的绝对收敛有一个重要的结论,就是可以任意交换项的顺序而不改变收敛性和收敛值。这个结论的证明并不复杂,也没用到经典的极限理论。思想方法也很值得借鉴。但我不明白我们的课本里却没有。当你告诉同学们一个结论的时候,你却不能提供证据,这样,时间长了同学们带着困惑去听课,会越听越糊涂,云山雾罩,最终失去了对数学的`热爱。讲课者也无法向学生展示数学的美。
2、上极限的概念我认为也应该讲,但没必要像数学专业讲得这么深奥。我对高数的学生讲这个概念只是一句话:上极限就是最大的子极限。再举一些例子就完了。不然的话,当极限不存在的时候,你如何求幂级数的收敛半径?
3、一致收敛的概念也应该讲,因为逐项求导、逐项积分也是工科学生常常使用的东西,没有一致收敛,你怎么可以堂而皇之地逐项求导、逐项积分?很多幂级数你不逐项求导、逐项积分你根本就求不出来。当然我讲这个概念也讲得很辛苦,讲完一致收敛及其他的性质,以及举出各种反例整整用了两个星期的时间(八学时),但是,一旦有了这个概念,学到幂级数的时候就感到非常轻松,一切都显得自然而然。因为幂级数的特殊性,你很容易就可以证明其是否一致收敛,再加上利用上极限的概念你很容易就可以证明逐项求导、逐项积分之后的幂级数收敛半径不变,很简单你就可以逐项积分、逐项求导。我真不知道没有一致收敛和上极限的概念,你怎么用很简洁的方法证明这个结论?而没有这个结论,你又如何保障逐项积分、逐项求导之后依旧收敛并且收敛到原来的函数的积分或者导数?而如果不加证明地丢给同学们很多不明就里的结论,要求他们强行记忆,然后拼命地做各种题目训练出做题的技能,这真的就是我们培养人才的目的吗?数学素质的教育和深度思考的习惯对其他专业理工科的学生真的就不重要吗?
至于时间不够的问题我认为根本就不存在。我的处理方式就是,仔细讲述涉及到的数学的概念和定理证明,至于计算题我就只讲一讲方法,他们回去做作业完全可以看着例题照着葫芦画瓢。
我们原来使用的微积分课本题目难度很大,可以说达到了一定的境界,但理论部分实在是难以恭维。这样的培养目标究竟是什么我真的不好讲,似乎是准备参加数学竞赛。但对数学素质的培养并没什么太大帮助,也没有培养出同学们学会思考问题的习惯,自学能力也得不到提升,对后续课程的学习也很不利。因为不知道为什么,学了也很容易忘掉。
总之,我建议大规模修改课本,增加系统的理论。非数学系的教学摆在我们面前的就是如何通俗地讲解数学理论,而不是放弃数学理论。原来这个课本千万不要再用了,简直就是误人子弟。
随着科技日新月异的发展和电脑无孔不入的应用。高等数学课程作为一种数学工具的功能正在逐步缩减。但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。
以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因。学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。
1)从正反两个层面理解概念
我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止。只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的'条件是必要的。还是充分的?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。
2)学与问
古人说。学起于思,思源于疑,这话道出了做学问的过程中发现问题提出问题的重要性。高等数学的讲课进程一般都比较快的,课堂上讲的内容不能完全听懂是正常的现象,同题在于听不懂看不懂的内容是随意放弃呢还是努力请教老师请教同学直到学懂为止。如果轻易放弃。时间一长就会失去学习的信心,所以一定要以锲而不舍的精神边学边问。不过这样的提问还只是被动的,主动的提问应该是自己在学习过程中去发现同题。如何才能发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。
3)做习题与想习题
学习数学,不做习题是绝对不行的。因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果。经过又一次正反两个层面的开掘。思考深入了,学习的兴趣也会逐步培育起来。
最近学习了xxx教授的《高等数学》的网络课程培训,x老师主要从高等数学教学改革、提高概念教学的效能等方面进行了讲解,既有理论深度,又跟实践结合紧密,对概念引入的背景阐述,对理论在其它方面的应用上,都完美体现了高等数学课程的应用性、广泛性、严谨性。x老师的课程对自己启发颇多,受益匪浅。
1、高等数学教学改革
各个高校的人才培养目标不同,不同专业对高等数学课程教学内容的要求也不同,所以,分层次、分专业教学非常必要。对纯数学专业的学生,需要注意教学内容的严密性、系统性,并希望学生在此基础上继续深入研究下去。对于非数学专业的学生,必须以数学的应用和应用数学为主要教学内容,教学中应加强习题课的教学,教给学生学习方法和解题方法的同时,进行有意识的强化训练,如自学例题、图解分析、推理方法、理解数学符号、温故知新、归类鉴别等,学生在应用这些方法求知的过程中,掌握相应的数学能力,形成创新和应用技能。对偏向文科的学生,不需要把定理证明全讲,可以将形象化的内容加入,注意植入一些专业知识,既保证课程的趣味性,又保证课程的实用性,使学生更容易理解一些抽象的东西,可以达到相对好的教学效果。分层次、分专业教学涉及到教材、考试、学分、课时、成绩评价、选课等一系列问题,需要统筹协调加以解决。
老师在课堂教学中,要充分考虑学生的知识和能力水平,适当应用多媒体教学,提高教学效率。通过借助数表、图形、动画等将抽象的概念用具体、直观的形式表达,用实例和示例加深对概念、方法的理解。另外,开设数学实验课,通过mathmatic和matlab等软件,让学生动手实践进行计算和画图,加深学生对所学知识的直观了解,从而达到提高学生的学习兴趣和积极性。老师教学要做到因材施教,根据不同学生的学习情况做好辅导答疑工作。例如,对于学习一般的学生,可用讨论的方法与学生一起分析问题,对于学习较差的学生,经常关心他们,让他们逐步树立起学习的信心。同时,将学生作业中的各种情况进行分类汇总,对学生容易出错的地方,进行耐心讲解。
2、用好教学资源,提高概念教学的的效能
加强基本概念教学是高等数学教学中的一个永恒主题。数学的学术形态和教学形态是不一样的;在教学形态中,教材形态和课堂形态也不应该一样要注意区分。引入新的概念和定理时,注意与前面的相关概念和结论加以比较,突出它们的有机联系,便于学生从总体上把握微积分的不同知识点。为了提高概念教学的通俗性,备课时要多换位思考,多想想学生的问题可能在哪里。另外还要提高概念引入的应用性,运用中外教材和教学资源中丰富的应用性案例,根据学生和教学实际进行改造和选用,尽可能揭示概念的实际应用背景,提高学生学习抽象概念的兴趣。在讲课中可以视情况适时插入一些既有趣味又带有一定深度的资料,可调节课堂气氛,提高学生学习兴趣。充分利用现有的教学资源,使数学概念的教学变得更生动、更平易、更有启发性。
3、中美微积分教材的比较研究
1965年到1975年,美国学习微积分的学生人数急剧增加,美国数学家们的最初反应是以同样的方式和较慢的速度教授同样的内容,这就产生了易懂但不太相关的教材和大规模的'班级,并且导致了大量学生不能及格,他们对数学再也提不起兴趣。直到二十世纪九十年代初,随着微积分改革的开展,数学家们才开始重新思考:他们在教些什么,为什么要教以及如何教。这种反思还在持续,由于美国大学生选修微积分的人数下降,更显得重要。目前还不能确定这些改革成果最终是否会成为大部分美国数学家所采用的微积分的教学方式。然而,这些讨论显然使得美国的微积分教学充满了活力。我希望随着中国高等学院的扩招,你们能避免我们的错误,并且开始考虑适用于你们社会的微积分教学改革方向。
x老师还详细给我们讲授了中美微积分教材的比较及启示和从美国的微积分教材的演变看信息技术对教学内容的影响,我们的微积分教材体系单一,内容趋同,而美国的微积分教材改革历史较长,有较多经验,美国教材的编者在习题配置和选材上破费功夫,使我更加深刻的认识到我们要吸取美国教材中图形和数值的作用及课后题目的设计些具体应用和启发式题目的必要性,参考外文教材认真备课,而学生可以借鉴外文教材理解概念和理论。
通过x老师深入浅出的讲解,我对高等数学的现状有了更深的了解和思考,希望以后有更多的机会参与这样的网络课程培训,进一步提高自己的教学能力和水平。
高等数学是大学工科课程里的一门重要基础课。它的重要性,我相信大家都了解。高等数学是许多课程的基础,特别是与以后的许多专业课都紧密相连。因此,学好高等数学对于一名工科学生来说,至关重要。
然而,对于许多同学来说,高等数学是一门头疼的学科。如何学好高等数学呢?下面是我个人在学习过程中的一些心得体会。
首先,我觉得高等数学与以前我们高中所学的数学有一点不同。高等数学注重的是一种数学的思想,比如说微积分思想,极限的思想。强调的数学的逻辑性与分析性。不像高中数学那样注重技巧性。因此,在学习的过程中,课本的知识至关重要。对于课本上面每一个概念、定理、公式、例题,都要理解清楚。特别是对于定理、公式的推导过程,不仅要弄懂每一步的推导过程如何来,而且还要学会自己推导。因为学会自己推导,更有助于我们的记忆和应用。我的经验是,在理解的基础上去记忆公式,而不是一味的死记硬背。
第二,学习数学是不能缺少训练的。一定量的。课后习题训练,不但可以让我们巩固我们学到的知识点,学会如何在实际中应用我们学到的公式定理,还有助于我们熟悉考试的各种题型。还有,题目并不是越多越好,题海战术不仅浪费大量的时间与精力,而且效果也不好。我的经验是,每做完一道题都要总结一下,特别是做错的题目,这道题的知识点是哪些?应用了哪些公式定理?错在哪里?为什么会做错?学会思考,学会总结,这样做题才能达到事半功倍的效果。
最后,学好数学是一个坚持的过程。高等数学的内容环环相扣,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一节一节,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。这样,对于后面的学习会造成很大的影响。
在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。
大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。
在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的`内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。
经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。
在选课的时候,我发现还能选修高数,这次,我不想再错过。我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。”是的,我选择重新认识高数,我要为自己过去的罪行赎罪。
再次接触高数,捧着2年前让我头疼的课本,我发现其实真的可以懂,老师讲的比较简单,思路也很清晰。重新认识了牛顿莱布尼兹的微积分,惊叹他们天才般的才智,运用无限的模糊理论,可以解决许多医学上的问题,我才觉得高数真的是充满了魅力和魔力,它能让我们把简单的问题先给复杂化最后再简单化,培养我们的思维,更智慧巧妙地解决生活中的问题。学好了高数,就像给你增添了一双隐形的翅膀,你拥有了更开阔缜密的思维,许多问题突然变得迎刃而解了。
当然,学好高数并非那么简单,但探索其中的奥秘确实非常有价值,我想,如果能把自己学到的高数知识运用到自己的生活,学习,工作上,才算是真正学好了高数,感谢高数,这次不仅仅因为它是高“树”,而是我明白,攀登上这棵高树,我看见了前所未有的迷人风景。