八年级上册数学教案【优秀11篇】

作为一名称职的数学教师,准备好八年级第一册的教案了吗?下面是爱岗敬业的小编演员给大伙儿找到的11篇八年级上册数学教案,希望对大家有一些参考价值。

八年级上册数学教案 篇1

【教学目标】

知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式。

过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解。

情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值。

【教学重难点】

重点:掌握用提公因式法把多项式分解因式。

难点:正确地确定多项式的最大公因式。

关键:提公因式法关键是如何找公因式。方法是:一看系数、二看字母。公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。

【教学过程】

一、回顾交流,导入新知

【复习交流】

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2);

(2)2t2-3t+1=(2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2;

(4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

问题:

1、多项式mn+mb中各项含有相同因式吗?

2、多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由。

【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y。

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法。

二、小组合作,探究方法

教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。

三、范例学习,应用所学

例1:把-4x2yz-12xy2z+4xyz分解因式。

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

例2:分解因式:3a2(x-y)3-4b2(y-x)2

【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法。

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2·3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2·3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

例3:用简便的方法计算:

0.84×12+12×0.6-0.44×12.

【教师活动】引导学生观察并分析怎样计算更为简便。

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本115页练习第1、2、3题。

【探研时空】

利用提公因式法计算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、课堂总结,发展潜能

1、利用提公因式法因式分解,关键是找准最大公因式。在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂。

2、因式分解应注意分解彻底,也就是说,分解到不能再分解为止。

六、布置作业,专题突破

课本119页习题14.3第1、4(1)、6题。

八年级上册数学教案 篇2

一、教材分析教材的地位和作用:

本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。

二、学情分析

八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。

三、教学目标及重点、难点的确定

根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:

(一)教学目标:

1、知识技能

(1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴。

(2)理解并掌握轴对称的概念,对称轴;了解对称点。

(3)了解轴对称图形和轴对称的联系与区别。

2、过程与方法目标

经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力。

3、情感、态度与价值观

通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。

(二)教学重点:轴对称图形和轴对称的有关概念。

(三)教学难点:轴对称图形与轴对称的联系、区别

。四、教法和学法设计

本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:

【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。

【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率

五、说程序设计:

新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。

(一)、观图激趣、设疑导入。

出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。

[设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣,

(二)、实践探索、感悟特征。

《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。

为了进一步认识轴对称图形的特点又出示了一组练习

(练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴

[设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。

(练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。

(三)、动手操作、再度探索新知。

将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。

再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念。并结合图形加以认识。

(四)、巩固练习、升华新知。

出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称,

在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。

(课件演示)轴对称图形及两个图形成轴对称区别与联系

(五)、综合练习、发展思维。

1、抢答;观察周围哪些事物的形状是轴对称图形。

2、判断:

生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。

(1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴?

0123456789ABCDEFGH

3、像这样写法的汉字哪些是轴对称图形?

口工用中由日直水清甲

(这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边)

(六)归纳小结、布置作业

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展!

六、设计说明

这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。

八年级上册数学教案 篇3

教学内容

本节课主要介绍全等三角形的概念和性质。

教学目标

1、知识与技能

领会全等三角形对应边和对应角相等的有关概念。

2、过程与方法

经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角。

3、情感、态度与价值观

培养观察、操作、分析能力,体会全等三角形的应用价值。

重、难点与关键

1、重点:会确定全等三角形的对应元素。

2、难点:掌握找对应边、对应角的方法。

3、关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角。教具准备

四张大小一样的纸片、直尺、剪刀。

教学方法

采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识。教学过程

一、动手操作,导入课题

1、先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

2、重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

【学生活动】动手操作、用脑思考、与同伴讨论,得出结论。

【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形。

学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心。

【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合。这样的两个图形叫做全等形,用“≌”表示。

概念:能够完全重合的两个三角形叫做全等三角形。

【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

【学生活动】动手操作,实践感知,得出结论:两个三角形全等。

【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边。

【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

【交流讨论】通过同桌交流,实验得出下面结论:

1、任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合。

2、这时它们的三个顶点、三条边和三个内角分别重合了。

3、完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置。

人教新版八年级数学上册教案 篇4

【教学目标】

1、了解分式概念。

2、理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

【教学重难点】

重点:理解分式有意义的条件,分式的值为零的条件。

难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

【教学过程】

一、课堂导入

1、让学生填写[思考],学生自己依次填出:

2、问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

设江水的流速为x千米/时。

轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=。

3、以上的式子有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。

[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。

二、例题讲解

例1:当x为何值时,分式有意义。

【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围。

(补充)例2:当m为何值时,分式的值为0?

(1);(2);(3)。

【分析】分式的值为0时,必须同时满足两个条件:

①分母不能为零;

②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解。

三、随堂练习

1、判断下列各式哪些是整式,哪些是分式?

9x+4

2、当x取何值时,下列分式有意义?

3、当x为何值时,分式的值为0?

四、小结

谈谈你的收获。

五、布置作业

课本128~129页练习。

人教新版八年级数学上册教案 篇5

【教学目标】

知识与技能

会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法

经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观

通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

【教学重难点】

重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

【教学过程】

一、创设情境,故事引入

【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事

【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?

【学生回答】多项式乘以多项式。

【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

【问题牵引】计算:

(1)(x+2)(x—2);(2)(1+3a)(1—3a);

(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

【学生活动】分四人小组,合作学习,获得以下结果:

(1)(x+2)(x—2)=x2—4;

(2)(1+3a)(1—3a)=1—9a2;

(3)(x+5y)(x—5y)=x2—25y2;

(4)(y+3z)(y—3z)=y2—9z2。

【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

【学生活动】讨论

【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?

【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。

【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。

二、范例学习,应用所学

【教师讲述】

平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。

例1:运用平方差公式计算:

(1)(2x+3)(2x—3);

(2)(b+3a)(3a—b);

(3)(—m+n)(—m—n)。

《乘法公式》同步练习

二、填空题

5、幂的乘方,底数______,指数______,用字母表示这个性质是______。

6、若32×83=2n,则n=______。

《乘法公式》同步测试题

25、利用正方形的面积公式和梯形的面积公式即可求解;

根据所得的两个式子相等即可得到。

此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。

26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;

等式左边减数的底数与序号相同,由此得出第n个式子;

数学八年级上册教案 篇6

第二环节:探索发现勾股定理

1、探究活动一

内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:

问:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边。通过对特殊情形的探究得到结论1,为探究活动二作铺垫。

效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。

2、探究活动二

内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

(1)观察下面两幅图:

(2)填表:

A的面积

(单位面积) B的面积

(单位面积) C的面积

(单位面积)

左图

右图

(3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。

学生的方法可能有:

方法一:

如图1,将正方形C分割为四个全等的直角三角形和一个小正方形。

方法二:

如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积。

方法三:

如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。

(4)分析填表的数据,你发现了什么?

学生通过分析数据,归纳出:

结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质。由于正方形C的面积计算是一个难�

效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.

3、议一议

内容:(1)你能用直角三角形的边长 , , 来表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。2中发现的规律对这个三角形仍然成立吗?

勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用 , 分别表示直角三角形的两直角边和斜边,那么。

数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角�

意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理。

效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力。

人教新版八年级数学上册教案 篇7

【教学目标】

知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式。

过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解。

情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值。

【教学重难点】

重点:掌握用提公因式法把多项式分解因式。

难点:正确地确定多项式的最大公因式。

关键:提公因式法关键是如何找公因式。方法是:一看系数、二看字母。公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。

【教学过程】

一、回顾交流,导入新知

【复习交流】

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2);

(2)2t2—3t+1=(2t3—3t2+t);

(3)x2+4xy—y2=x(x+4y)—y2;

(4)m(x+y)=mx+my;

(5)x2—2xy+y2=(x—y)2。

问题:

1、多项式mn+mb中各项含有相同因式吗?

2、多项式4x2—x和xy2—yz—y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由。

【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2—x中的公因式是x,在xy2—yz—y中的公因式是y。

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法。

二、小组合作,探究方法

教师提问:多项式4x2—8x6,16a3b2—4a3b2—8ab4各项的公因式是什么?

【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。

三、范例学习,应用所学

例1:把-4x2yz-12xy2z+4xyz分解因式。

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

例2:分解因式:3a2(x-y)3-4b2(y-x)2

【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法。

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2·3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2·3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

例3:用简便的方法计算:

0.84×12+12×0.6-0.44×12.

【教师活动】引导学生观察并分析怎样计算更为简便。

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本115页练习第1、2、3题。

【探研时空】

利用提公因式法计算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、课堂总结,发展潜能

1.利用提公因式法因式分解,关键是找准最大公因式。在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂。

2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止。

六、布置作业,专题突破

课本119页习题14.3第1、4(1)、6题。

八年级上册数学教案 篇8

教学目标

1.等腰三角形的概念。 2.等腰三角形的性质。 3.等腰三角形的概念及性质的应用。

教学重点: 1.等腰三角形的概念及性质。 2.等腰三角形性质的应用。

教学难点:等腰三角形三线合一的性质的理解及其应用。

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是。

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形。

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴。

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数。

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角。

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则 ∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识。

Ⅲ.随堂练习:1.课本P51练习 1、2、3. 2.阅读课本P49~P51,然后小结。

Ⅳ.课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

Ⅴ.作业: 课本P56习题12.3第1、2、3、4题。

板书设计

12.3.1.1 等腰三角形

一、设计方案作出一个等腰三角形

二、等腰三角形性质: 1.等边对等角 2.三线合一

八年级教案数学上册教案 篇9

教学目标:

1、理解三角形的内外角平分线定理;

2、会证明三角形的内外角平分线定理;

3、通过对定理的证明,学习几何证明方法和作辅助线的方法;

4、培养逻辑思维能力。

教学重点:

1、几何证明中的证法分析;

2、添加辅助线的方法。

教学难点:

如何添加有用的辅助线。

教学关键:

抓住相似三角形的判定和性质进行教学。

教学方法:

“四段式”教学法,即读、议、讲、练。

一、阅读课本,注意问题

1、复习旧知识,回答下列问题

①在等腰三角形中,怎样从等边得出等角?又怎样从等角得出等边?请画图说明。

②辅助线的作法中,除了过两个点连接一条线段外,最常见的就是过某个已知点作某条已知直线的平行线。平行线有哪些性质?

③怎样判断两个三角形是相似的?相似三角形最基本的性质是什么?

④几何证明中怎样构造有用的相似三角形?

2、阅读课本,弄清楚教材的内容,并注意教材上是怎样讲的。

提示:课本上在这一节讲了三角形的内外角平分线定理,每个定理各讲了一种证明方法。为了叙述定理的需要,课本上还讲了线段的内分点和外分点两个概念。最后用一个例题来说明怎样运用三角形的内外角平分线定理。阅读时要注意课本上有关问题的叙述、分析以及作辅助线的方法。通过适当的联想和猜测,找出一些课本上尚未出现的新的证明方法。

3、注意下列问题:

⑴如图,等腰中,顶角的平分线交底边于,那么,图中出现的相等线段是__即__。通过比较得到。

⑵如果上面问题中的换成任意三角形,即右图的,平分,交于,那么,是不是还成立?请同学们用刻度尺量一量线段的长度,计算,然后再比较(小的误差忽略不计)。

⑶三角形的内角平分线定理说的是什么意思?课本上是怎样写已知、求证的?

⑷课本上是怎样进行分析、证明的?都用了哪些学过的知识?证明的根据是什么?

⑸课本上证明的过程中是怎样作辅助线的?这样作辅助线的目的是什么?

⑹过、、三点能不能作出有用的辅助线?如果能,辅助线应该怎样作?各能作出几条?

⑺就作出的辅助线,怎样寻找证明的思路和方法?分析的过程中用到了哪些知识?

⑻你能不能类似地叙述三角形的外角平分线定理?

⑼回答练习中的第一题。

⑽总结证明方法和作辅助线的方法。

⑾注意内分点和外分点两个概念及其应用。

4、阅读指导丛书《平面几何》第二册。

⑴注意辅助线中平行线的作法,通过对图、、的观察分析,找出解决问题的证明方法。

⑵丛书利用正弦定理中的面积公式来证明三角形的内角平分线定理,既把有关的知识联系起来、拓展了解题思路,又为我们提供了一种比较简单的解决问题的方法,值得我们借鉴。要注意三角形面积的几种不同的计算方法。

二、互相讨论,解答疑点

1、上面提出的问题,希望大家独立思考、独立完成。根据已有的思路和线索,参照课本上的方法进行分析。

2、思考中实在是有困难的同学,可以和周围的同学互相讨论,发表看法;也可以请老师帮助、提示或指点。

3、把同学之间讨论的结果,整理成一个完整的证明过程,写出每一步证明的根据。最后,适当地总结一些解题的经验和方法。

三、讲评纠正,整理内容

1、把学生讨论的结果归纳出来,加以补充说明,纠正错误后进行适当的分类总结,点明证题法中的要点。

①证明比例式的依据是平行截割定理的推论,因此,我们作的辅助线都是平行线。

②从上述几种证明方法可以看出,证明的关键在于通过作辅助线把某些线段“移动”到适当的位置,以便根据平行截割定理的推论得出所要的结论。

③辅助平行线的作法,只能是过__三点分别作不过、三点的边(线段)的平行线,和另一条边(线段)的延长线相交,构成一个等腰三角形,达到“移动”的目的。

2、整理教学内容

⑴线段的内分点和外分点

(ⅰ)定义:

①在线段上,把线段分成两条线段的点叫做这条线段的内分点。

②在线段的延长线上的点叫做这条线段的外分点。

(ⅱ)举例

点在线段上,把线段分成了和两条线段,所以,点是线段的内分点,线段和叫做点内分线段所得的两条线段。

点在线段的延长线上,和、两个端点构成了、两条线段,所以,点是线段的外分点,线段和叫做点外分线段所得的两条线段。

(ⅲ)条件

①内分点的条件:

a)在已知线段上;

b)把已知线段分成另外两条线段。

②外分点a)在已知线段的延长线上;

b)和已知线段的两端点构成另外的两条线段。

(ⅳ)特殊情况

a)线段的中点是不是线段的内分点?内分点是不是线段的中点?

b)线段的黄金分割点是不是线段的内分点?内分点是不是线段的黄金分割点?

c)一条已知线段有几个中点?有几个黄金分割点?有几个内分点?几个外分点?

(ⅰ)定理:三角形的内角平分线分对边所得的两条线段与夹这个角的两边对应成比例。

(ⅱ)已知:中,平分,交于。

求证:__。

(ⅲ)简单分析

从结论来考虑,横着看,两个比的前项、在中,两个比的后项、在中。按照相似三角形的性质,只要∽,那么,结论就是成立的。但是,与不是一对相似三角形,所以,不可能用相似三角形来证明。竖着看,有和,事实上,不成一个三角形。若是从“平行线分两条线段所得的线段对应成比例”(平行截割定理的推论)来考虑,显然,图中也没有平行线。因此,要想得到结论,只有把其中的某条线段进行适当的移动,使其构成相似三角形的对应边,或者成为两条直线上被平行线截得的对应线段。这样,我们就确定了辅助线的作法以平行线为主。

例如,把线段绕着它的端点旋转适当的角度到图中的位置(即的延长线)。由于旋转不改变线段的长度,所以,从旋转情况可得。由于平分,所以,连接后可以证明。因此,实际证明时,一般都叙述为“过点作交的延长线于”。不管是哪种说法,其结果都是一样的。类似地,我们还可以把线段绕着它的端点旋转适当的角度到端点落在线段的延长线上,同样也可以证明。

(ⅳ)证法提要

①证法一:如上图,过点作交的延长线于,可以得到:

a)(为什么?);

b)(为什么?)。通过等量代换便可以得到结论。同样,过点作的平行线和边的延长线相交,也可以证得结论,证明的方法是完全一样的。

②证法二:如右图,过点作交的延长线于,可以得到:

a)(为什么?);

b)(为什么?)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和的延长线相交,也可以得到结论,证明的方法是完全一样的。

③证法三:如右图,过点作交于,可以得到:

a)(为什么?);

b)(为什么?);

c)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和相交,也可以得到结论,证明的方法是完全一样的。

④证法四:如下页图,过点作交于,根据三角形的面积公式可得:__

又根据正弦定理的面积公式有:

通过比较就可以得到:所要的结论。

(ⅰ)定理:三角形的外角平分线外分对边所得的两条线段与夹这个角的两边对应成比例。

(ⅱ)已知:中,是的一个外角,平分,交的延长线于。

求证:__。

(ⅲ)简单分析:(类同内角平分线定理的分析方法)

(ⅳ)证法提要;(类同内角平分线定理的分析方法)

四、小结全节,练习巩固

1、小结

⑴两个定理

(ⅰ)三角形的内角平分线定理

(ⅱ)三角形的外角平分线定理

⑵证明方法

分为四大类共七种方法。

2、练习

⑴教材,2、3两题。

⑵补充题:

①画任意一个三角形的某个角的内外角平分线,说明内外角平分线之间的关系,证明你的结论。

②画等腰三角形的外角平分线,说明外角平分线和底边之间的关系,证明你的结论。

3、作业

教材,17、18两题。

八年级上册数学教案 篇10

【教学目标】

知识目标:

解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:

(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:

充分调动学生学习的积极性、主动性

【教学重点】

单项式与多项式的乘法运算

【教学难点】

推测整式乘法的运算法则。

【教学过程】

一、复习引入

通过对已学知识的复习引入课题(学生作答)

1、请说出单项式与单项式相乘的法则:

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂

例如:( 2a2b3c) (-3ab)

解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

= -6a3b4c

2、说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

这便是我们今天要研究的问题。

二、新知探究

已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

结论单项式与多项式相乘的运算法则:

用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc

运算思路:单×多

转化

分配律

单×单

三、例题讲解

例计算:(1)(-2a2)· (3ab2– 5ab3)

(2)(- 4x) ·(2x2+3x-1)

解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

八年级上册数学教案 篇11

【教学目标】

知识目标:

解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:

(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:

充分调动学生学习的积极性、主动性

【教学重点】

单项式与多项式的乘法运算

【教学难点】

推测整式乘法的运算法则。

【教学过程】

一、复习引入

通过对已学知识的复习引入课题(学生作答)

1、请说出单项式与单项式相乘的法则:

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂

例如:( 2a2b3c) (-3ab)

解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

= -6a3b4c

2、说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

这便是我们今天要研究的问题。

二、新知探究

已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

结论单项式与多项式相乘的运算法则:

用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc

运算思路:单×多

转化

分配律

单×单

三、例题讲解

一键复制全文保存为WORD