通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。下面是小编精心为大家整理的初中数学教案优秀5篇,希望大家可以喜欢并分享出去。
教学目标:
1、理解切线的判定定理,并学会运用。
2、知道判定切线常用的方法有两种,初步掌握方法的选择。
教学重点:
切线的判定定理和切线判定的方法。
教学难点:
切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。
教学过程:
一、复习提问
【教师】
问题1.怎样过直线l上一点P作已知直线的垂线?
问题2.直线和圆有几种位置关系?
问题3.如何判定直线l是⊙O的切线?
启发:
(1)直线l和⊙O的公共点有几个?
(2)圆心O到直线L的距离与半径的数量关系 如何?
学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)
再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)
二、引入新课内容
【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。
证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。
定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,
求证:直线l是⊙O的切线
证明:略
定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A
∴直线l为⊙O的切线。
是非题:
(1)垂直于圆的半径的直线一定是这个圆的切线。 ( )
(2)过圆的半径的外端的直线一定是这个圆的切线。 ( )
三、例题讲解
例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。
求证:直线AB是⊙O的切线。
引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。
证明:连结OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直线AB经过半径OC的外端C
∴直线AB是⊙O的切线。
练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。
练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。
求证:CD是⊙O的切线。
例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。
求证:DE是⊙O的切线。
思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?
四、小结
1、切线的判定定理。
2、判定一条直线是圆的切线的方法:
①定义:直线和圆有唯一公共点。
②数量关系:直线到圆心的距离等于该圆半径(即d = r)。[
③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。
3、证明一条直线是圆的切线的辅助线和证法规律。
凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。
五、布置作业:略
《切线的判定》教后体会
本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:
成功之处:
一、 教材的二度设计顺应了学生的认知规律
这批★WWW.BAIHUAWEN.com★学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。
二、重视学生数感的培养呼应了课改的理念
数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1、设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2.x的值是否可以任意取?有限定范围吗?
3、我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x p="" <10)就是所求的函数关系式。<="" <x="" 对于3,教师可提出问题,(1)当ab="xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0"
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件。该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:
1、商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2、如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3、若每件商品降价x元,则每件商品的利润是多少元?一天可销
售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5、若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0<x
y=-2x2+20x(0<x<10)……(1) p="" (0≤x≤2)……(2)
三、观察;概括
1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2、二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项。
四、课堂练习
1、(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1、请叙述二次函数的定义。
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略
[教学目标]
1、体会并了解反比例函数的图象的意义
2、能列表、描点、连线法画出反比例函数的图象
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质
[教学重点和难点]
本节教学的重点是反比例函数的图象及图象的性质
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点
[教学过程]
1、情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?
2、探索活动
探索活动1反比例函数y?
由于反比例函数y?
要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点?
连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。
探索活动2反比例函数y??2的图象。x2的图象是曲线型的,且分成两支。对此,学生第一次接触有一定的难度,因此需x2的图象。x
可以引导学生采用多种方式进行自主探索活动:
2的图象的方式与步骤进行自主探索其图象;x
222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象。__
22探索活动3反比例函数y??与y?的图象有什么共同特征?__(1)可以用画反比例函数y?
引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征。(即双曲线)反比例函数y?
k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x
教学目标
1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。
2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。
3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。
4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。
重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。
2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点利用数形结合的方法验证公式
教学方法动手操作,合作探究课型新授课教具投影仪
教师活动学生活动
情景设置:
你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)
新课讲解:
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:
教师接着在介绍教材第94页例题的拼法及相关公式
提问:还能通过怎样拼图来解决以下问题
(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;
(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2
试用拼一个长方形的方法,把这个二次三项式因式分解。
这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作
了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。
小结:
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)
学生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
学生拿出准备好的硬纸板制作
给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。
作业第95页第3题
板书设计
教学目标:
1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)
2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)
3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)
教学难点:
了解“两点确定一条直线”等事实,并应用它解决一些实际问题
教 具:
多媒体、棉线、三角板
教学过程:
情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。
如何来描述我们所看到的现象?
教学过程:
1、 一段拉直的棉线可近似地看作线段
师生画线段
演示投影片1:
①将线段向一个方向无限延长,就形成了______
学生画射线
②将线段向两个方向无限延长就形成了_______
学生画直线
2、 讨论小组交流:
① 生活中,还有哪些物体可以近似地看作线段、射线、直线?
(强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)
②线段、射线、直线,有哪些不同之处, 有哪些相同之处?
(鼓励学生用自己的语言描述它们各自的特点)
3、 问题1:图中有几条线段?哪几条?
“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。
点的记法: 用一个大写英文字母
线段的记法:
①用两个端点的字母来表示
②用一个小写英文字母表示
自己想办法表示射线,让学生充分讨论,并比较如何表示合理
射线的记法:
用端点及射线上一点来表示,注意端点的字母写在前面
直线的记法:
① 用直线上两个点来表示
② 用一个小写字母来表示
强调大写字母与小写字母来表示它们时的区别
(我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)
练习1:读句画图(如图示)
(1) 连BC、AD
(2) 画射线AD
(3) 画直线AB、CD相交于E
(4) 延长线段BC,反向延长线段DA相交与F
(5) 连结AC、BD相交于O
练习2:右图中,有哪几条线段、射线、直线
4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?
学生通过画图,得出结论:过一点可以画无数条直线
经过两点有且只有一条直线
问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?
为什么?(学生通过操作,回答)
小组讨论交流:
你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?
适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。
5、 小结:
① 学生回忆今天这节课学过的内容
进一步清晰线段、射线、直线的概念
② 强调线段、射线、直线表示方法的掌握
6、 作业:
①阅读“读一读” P121
②习题4的1、2、3、4作为思考题。