作为一名专为他人授业解惑的人民教师,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。如何把教案做到重点突出呢?下面是小编辛苦为大家带来的高二数学优秀教案精选7篇,在大家参照的同时,也可以分享一下给您最好的朋友。
一、教学目标
1、知识与技能
(1)理解流程图的顺序结构和选择结构。
(2)能用文字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图
2、过程与方法
学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。
3情感、态度与价值观
学生通过动手作图,。用自然语言表示算法,用图表示算法。进一步体会算法的基本思想程序化思想,在归纳概括中培养学生的逻辑思维能力。
二、教学重点、难点
重点:算法的顺序结构与选择结构。
难点:用含有选择结构的流程图表示算法。
三、学法与教学用具
学法:学生通过动手作图,。用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。
教学用具:尺规作图工具,多媒体。
四、教学思路
(一)、问题引入 揭示课题
例1 尺规作图,确定线段的一个5等分点。
要求:同桌一人作图,一人写算法,并请学生说出答案。
提问:用文字语言写出算法有何感受?
引导学生体验到:显得冗长,不方便、不简洁。
教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。
本节要学习的是顺序结构与选择结构。
右图即是同流程图表示的算法。
(二)、观察类比 理解课题
1、 投影介绍流程图的符号、名称及功能说明。
符号 符号名称 功能说明终端框 算法开始与结束处理框 算法的各种处理操作判断框 算法的各种转移
输入输出框 输入输出操作指向线 指向另一操作
2、讲授顺序结构及选择结构的概念及流程图
(1)顺序结构
依照步骤依次执行的一个算法
流程图:
(2)选择结构
对条件进行判断来决定后面的步骤的结构
流程图:
3、用自然语言表示算法与用流程图表示算法的比较
(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。
解:
算法(自然语言)
①把10赋与r
②用公式 求s
③输出s
流程图
(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。
算法:(语言表示)
① 输入X值
②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值
③输出Y的值
流程图
小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。
学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)
(三)模仿操作 经历课题
1、用流程图表示确定线段A.B的一个16等分点
2、分析讲解例2;
分析:
思考:有多少个选择结构?相应的流程图应如何表示?
流程图:
(四)归纳小结 巩固课题
1、顺序结构和选择结构的模式是怎样的?
2、怎样用流程图表示算法。
(五)练习P99 2
(六)作业P99 1
教学目标
1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;
2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;
3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;
4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;
5.通过让中国学习联盟胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.
教学建议
教材分析
1. 知识结构
2.重点难点分析
重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.
椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的`研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.
(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.
另外要注意到定义中对“常数”的限定即常数要大于 .这样规定是为了避免出现两种特殊情况,即:“当常数等于 时轨迹是一条线段;当常数小于 时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.
(2)根据椭圆的定义求标准方程,应注意下面几点:
①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.
②设椭圆的焦距为 ,椭圆上任一点到两个焦点的距离为 ,令 ,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.
③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.
④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程 “而没有证明,”方程 的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.
(3)两种标准方程的椭圆异同点
中心在原点、焦点分别在 轴上, 轴上的椭圆标准方程分别为: , .它们的相同点是:形状相同、大小相同,都有 , .不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.
椭圆的焦点在 轴上 标准方程中 项的分母较大;
椭圆的焦点在 轴上 标准方程中 项的分母较大.
另外,形如 中,只要 , , 同号,就是椭圆方程,它可以化为 .
(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.
教法建议
(1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.
为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。
例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.
(2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历
为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.
(3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。
教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。
教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。
(4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质
在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程()中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。
(5)注意椭圆的定义与椭圆的标准方程的联系
在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.
(6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.
推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)
(7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.
(8)在学习新知识的基础上要巩固旧知识
椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.
(9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。
教学目标:
1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。
教学重点:
体会直角坐标系的作用。
教学难点:
能够建立适当的直角坐标系,解决数学问题。
授课类型:
新授课
教学模式:
启发、诱导发现教学。
教 具:
多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴 它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
2、确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置
例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?
变式训练
1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程
例3 已知Q(a,b),分别按下列条件求出P 的坐标
(1)P是点Q 关于点M(m,n)的对称点
(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)
变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
五、小 结:本节课学习了以下内容:
1.平面直角坐标系的意义。
2、 利用平面直角坐标系解决相应的数学问题。
六、课后作业:
一、教学目标设计
1、 了解利用科学计算免费软件--Scilab软件编写程序来实现算法的基本过程。
2、 了解并掌握Scilab中的基本语句,如赋值语句、输入输出语句、条件语句、循环语句;能在Scipad窗口中编辑完整的程序,并运行程序。
3、 通过上机操作和调试,体验从算法设计到实施的过程。
二、教学重点及难点
重点: 体会算法的实现过程,能认识到一个算法可以用很多的语言来实现,Scilab只是其中之一。
难点:体会编程是一个细致严谨的过程,体会正确完成一个算法并实施所要经历的过程。
三、教学流程设计
四、教学过程设计
(一)几个基本语句和结构
1、赋值语句(=)
2、输入语句 输入变量名=input(提示语)
3、输出语句 print() disp()
4、条件语句
5、循环语句
(二)几个程序设计
建议:直接在Scilab窗口下编写完整的程序,保存后再运行;如果不能运行或出现逻辑错误
可打开程序后直接修改,修改后再保存运行,反复调试,直到测试成功。
课题1.1.1命题及其关系(一)课型新授课
目标
1)知识方法目标
了解命题的概念,
2)能力目标
会判断一个命题的真假,并会将一个命题改写成“若 ,则 ”的形式。
重点
难点
1)重点:命题的改写
2)难点:命题概念的理解,命题的条件与结论区分
教法与学法
教法:
教学过程备注
1、课题引入
(创设情景)
阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
(2)3 ;
(3)3 吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子。
2、问题探究
1)难点突破
2)探究方式
3)探究步骤
4)高潮设计
1、命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition)。
上述6个语句中,(1)(2)(4)(5)(6)是命题。
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition)。
上述5个命题中,(2)是假命题,其它4个都是真命题。
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;
(2)若整数 是素数,则 是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
(5) ;
(6)平面内不相交的两条直线一定平行;
(7)明天下雨。
(学生自练 个别回答 教师点评)
④探究:学生自我举出一些命题,并判断它们的真假。
2、 将一个命题改写成“若 ,则 ”的形式:
①例1中的(2)就是一个“若 ,则 ”的命题形式,我们把其中的 叫做命题的'条件, 叫做命题的结论。
②试将例1中的命题(6)改写成“若 ,则 ”的形式。
③例2:将下列命题改写成“若 ,则 ”的形式。
(1)两条直线相交有且只有一个交点;
(2)对顶角相等;
(3)全等的两个三角形面积也相等。
(学生自练 个别回答 教师点评)
3、 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若 ,则 ”的形式。
引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。
通过例子引导学生辨别命题,区分命题的条件和结论。改写为“若 ,则 ”的形式,为后续的学习打好基础。
3、练习提高1. 练习:教材 P4 1、2、3
师生互动
4、作业设计
作业:
1、教材P8第1题
2、作业本1-10
5、课后反思
[新知初探]
1、向量的数乘运算
(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:
①|λa|=|λ||a|;
②当λ>0时,λa的方向与a的方向相同;
当λ<0时,λa的方向与a的方向相反。
(2)运算律:设λ,μ为任意实数,则有:
①λ(μa)=(λμ)a;
②(λ+μ)a=λa+μa;
③λ(a+b)=λa+λb;
特别地,有(—λ)a=—(λa)=λ(—a);
λ(a—b)=λa—λb。
[点睛](1)实数与向量可以进行数乘运算,但不能进行加减运算,如λ+a,λ—a均无法运算。
(2)λa的结果为向量,所以当λ=0时,得到的结果为0而不是0。
2、向量共线的条件
向量a(a≠0)与b共线,当且仅当有一个实数λ,使b=λa。
[点睛](1)定理中a是非零向量,其原因是:若a=0,b≠0时,虽有a与b共线,但不存在实数λ使b=λa成立;若a=b=0,a与b显然共线,但实数λ不,任一实数λ都能使b=λa成立。
(2)a是非零向量,b可以是0,这时0=λa,所以有λ=0,如果b不是0,那么λ是不为零的实数。
3、向量的线性运算
向量的加、减、数乘运算统称为向量的线性运算。对于任意向量a,b及任意实数λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。
[小试身手]
1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)
(1)λa的方向与a的方向一致。()
(2)共线向量定理中,条件a≠0可以去掉。()
(3)对于任意实数m和向量a,b,若ma=mb,则a=b。()
答案:(1)×(2)×(3)×
2、若|a|=1,|b|=2,且a与b方向相同,则下列关系式正确的是()
A、b=2aB、b=—2a
C、a=2bD、a=—2b
答案:A
3、在四边形ABCD中,若=—12,则此四边形是()
A、平行四边形B、菱形
C、梯形D、矩形
答案:C
4、化简:2(3a+4b)—7a=XXXXXX。
答案:—a+8b
向量的线性运算
[例1]化简下列各式:
(1)3(6a+b)—9a+13b;
(2)12?3a+2b?—a+12b—212a+38b;
(3)2(5a—4b+c)—3(a—3b+c)—7a。
[解](1)原式=18a+3b—9a—3b=9a。
(2)原式=122a+32b—a—34b=a+34b—a—34b=0。
(3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。
向量线性运算的方法
向量的线性运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量。
一、教学目标
【知识与技能】
能正确概述“二面角”、“二面角的平面角”的概念,会做二面角的平面角。
【过程与方法】
利用类比的方法推理二面角的有关概念,提升知识迁移的能力。
【情感态度与价值观】
营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。
二、教学重、难点
【重点】
“二面角”和“二面角的平面角”的概念。
【难点】
“二面角的平面角”概念的形成过程。
三、教学过程
(一)创设情境,导入新课
请学生观察生活中的一些模型,多媒体展示以下一系列动画如:
1、打开书本的过程;
2、发射人造地球卫星,要根据需要使卫星的轨道平面与地球的赤道平面成一定的角度;
3、修筑水坝时,为了使水坝坚固耐久,须使水坝坡面与水平面成适当的角度;
引导学生说出书本的两个面、水坝面与底面,卫星轨道面与地球赤道面均是呈一定的角度关系,引出课题。
(二)师生互动,探索新知
学生阅读教材,同桌互相讨论,教师引导学生对比平面角得出二面角的概念
平面角:平面角是从平面内一点出发的两条射线(半直线)所组成的图形。
二面角定义:从一条直线出发的两个半面所组成的图形,叫作二面角。这条直线叫作二面角的棱,这两个半平面叫作二面角的面。(动画演示)
(2)二面角的表示
(3)二面角的画法
(PPT演示)
教师提问:一般地说,量角器只能测量“平面角”(指两条相交直线所成的角。相应地,我们把异面直线所成的角,直线与平面所成的角和二面角,均称为空间角)那么,如何去度量二面角的大小呢?我们以往是如何度量某些角的?教师引导学生将空间角化为平面角。
教师总结:
(1)二面角的平面角的定义
定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
“二面角的平面角”的定义三个主要特征:点在棱上、线在面内、与棱垂直(动画演示)
大小:二面角的大小可以用它的平面角的大小来表示。
平面角是直角的二面角叫做直二面角。
(2)二面角的平面角的作法
①点P在棱上—定义法
②点P在一个半平面上—三垂线定理法
③点P在二面角内—垂面法
(三)生生互动,巩固提高
(四)生生互动,巩固提高
1、判断下列命题的真假:
(1)两个相交平面组成的图形叫做二面角。( )
(2)角的两边分别在二面角的两个面内,则这个角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
2、作出一下面PAC和面ABC的平面角。
(五)课堂小结,布置作业
小结:通过本节课的学习,你学到了什么?
作业:以正方体为模型请找出一个所成角度为四十五度的二面角,并证明。