分 数 的 意 义下面是整理的分数的意义教案(最新10篇),您的肯定与分享是对小编最大的鼓励。
[按]2002年8月,黄爱华老师应邀在西藏拉萨市讲学,借班上了这节“分数的意义”示范课。黄老师大胆改革原教材的例题呈现方式,采用板快结构,通过对1/4、2/3、1/□、□/□四个分数的操作理解,为学生创设自主探索的问题情境,提供充分的感性材料,让学生多种感官参与实践活动。使学生在自己动手操作、独立思考、观察讨论、合作交流、自主探究的过程中感受、理解分数的意义。同时,也培养了学生分析、比较、概括等逻辑思维能力,使他们在知、情、意、诸方面和谐发展。本节课采取分组活动教学,每六人为一组。但在活动操作中,也有单个活动或两人活动的方式。教学准备包括:(1)学生课前查找资料(书籍、杂志、上网),了解分数的产生;(2)学生课前收集生活中常用的分数;(3)活动材料。如:长方形纸、正方形纸、圆形纸、苹果等各种磁性实物模型若干(同类的数分别为4、5、6、8、9、10、12不等),红花图,尺子、彩笔等。一、 感知1/41、回忆旧知(课件出示1/4)师:这是什么数?生:这是个分数,1/4。师:你已经知道了分数的哪些知识?(学生回答知道了分数的读写法、各部分的名称、分数的产生以及1/4表示什么)师:你们能不能利用桌上的材料表示1/4?2、学生独立操作,尽量想出不同的方法,并用彩笔画出阴影表示1/4,教师巡视 学生可能出现的表示形式。3、展示汇报师:谁愿意上台来展示一下你的成果?生1:我把一张长方形纸对折再对折,其中的一份就是这个长方形的1/4;生2:我把一个圆平均分成4份,其中的一份就是它的1/4;生3:我把一条线段平均分成4份,每一份都是它的1/4;生4:我把4个苹果看作一个整体,平均分成4份,每份是它的1/4;师:(指 生4 的图,作疑惑的神情问)这样能用1/4来表示吗?(学生先思考,再小组讨论,自由发表意见)生1:我认为不能。把4个苹果平均分成4份,每份是1一苹果,所以每份不是1/4;生2;我认为能。因为在这里把4个苹果看作一个整体;生3:我认为能。因为把4个苹果看作一个整体平均分成4份,每份就是这个整体的1/4。师:刚才几位同学的发言都强调了要把4个苹果看作一个整体,平均分成4份,每份就是这个整体的一部分,也就是几分之几?(1/4)是几个苹果?(1个)师:请接着往下看,谁来用一句话说说下面这副图的意思?(课件动态演示把1个苹果平均分成4份)生:把1个苹果平均分成4粉,每份是这1个苹果的1/4。(教师引导学生观察比较先后呈现的两副图)师:你是怎样理解这两副图的?生1:一种是把1个苹果平均分,一种是把4个苹果平均分;生2;两种都是平均分,每一份都能用分数1/4表示。 (二)理解2/31、组织学生操作体会2/3的意义师:请看老师又给大家带来了一个什么分数?(出示2/3)2/3表示什么呢?这个问题我想请同学们一起来解决。要求每两人一组,选择桌上的材料表示2/3,然后组内交流。2、学生自由组合,利用桌上的材料操作交流,教师巡视3、反馈师:哪两位同学愿意把你们的表示形式向全班同学展示一下?生1:把3条金鱼看作一个整体,平均分成3份,其中的1份是这个整体的1/3,2份是这个整体的2/3;生2:把6支可乐看作一个整体,平均分成3份,其中的2份是这6支可乐的2/3。师:你真了不起!想出了与众不同的方法。2/3在这里表示几支可乐?生2:4支。生3:把9朵花看作一个整体,平均分成3份,其中的2份是这个整体的2/3。师:有创意!请问,剩下的1份是这个整体的几分之几?生3:1/3。生4:把一张纸平均分成3份,阴影部分是它的2/3。(图略)师:想一想,阴影部分还可以用什么分数来表示?生4:4/6。也可以看作把它平均分成6份,其中的4份就是它的4/6。师;真聪明!2/3就等于4/6!还有谁想展示一下你是怎样表示1/3的?(学生各抒己见,教师及时针对有创新的展示汇报给予肯定与鼓励) (三)深化1/□1、组织学生利用花朵图探究它的1/□ 师:你们还想研究别的分数吗?(课件出示1/□)这是个分数吗?它好特别!特别在哪儿?(分母没有分数)它读作什么?每个小组都有一些这样的图(课件演示12朵花),请你们涂上颜色来表示这些花的几分之一。大家先思考,再小组分工合作,看看可以有多少中不同的方法来表示。2、学生分小组思考、操作交流,教师巡视,引导学生用不同的方式表示3、反馈师:请每组推荐一名同学上台以接力赛的形式汇报,其他同学注意倾听别人的意见,已经说过的方法就不再展示。(学生一边展示,一边叙述是怎样表示几分之一的)生1:我们把12朵花平均分成2份,涂红色的部分是这个整体的1/2;生2:我们把12朵花平均分成3份,黄色部分是这12朵花的1/3;生3:我们把12朵花平均分成4份,不涂色的(涂了9朵花)是这个整体的1/4;生4:我们把12朵花平均分成6份,涂橙色部分是这个整体的1/6;生4:我们把12朵花平均分成12份,紫色部分是这个整体的1/12;教师把学生汇报的情况汇总在一起。(课件演示) 观察这组图形和分数,你发现了什么?生1:我发现了都是把12朵花平均分成几份;生2:我发现了分子都是“1”,也就是都只取其中的一份;生3:我发现了分母越大,每份所表示的花的朵数就越少;生4:我发现了分母都是12的约数。师:同学们真了不起,发现了这么多的知识! (四)理解□/□1、组织学生探讨□/□的意义师:(课件出示□/□)猜一猜,老师想让你干什么?生:填分数,理解它表示什么?师:很好!请大家先看要求。(课件演示如下,学生默读操作要求)(1)小组内先确定一个分数;(2)分一分------选择材料表示这个分数;(3)画一画------用简单的图形表示这个分数;(4)说一说------组内互相说说这个分数。2、学生采用小组活动的形式,分一分、画一画、说一说分数的意义,教师巡视指导3、汇报展示学生在实物投影仪上展示出操作材料,并口述此分数表示什么。生1:我们把一张纸平均分成32分,其中的5份是这张纸的5/32;生2:我们把8只螃蟹平均分成4份,拿走的3份是这个整体的3/4,剩下的两只是这个整体的1/4;生3:我们把10个橙平均分给5个同学,两个同学共分得10个橙的2/5,其余同学分得这些橙的3/5;生4;我们买了7包薯条,吃了1包,吃了它的1/7,还剩6/7。……4、学生讨论、概括分数的意义师:像这样,一个物体、一个计量单位、一些物体都通称为单位“1”或整体“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数,这也是分数的意义。而表示其中的一份的数叫分数单位。(板书)刚才我们认识了哪些分数单位?2/3的分数单位是什么?它里面有几个1/3?师:生活中人们常用分数来进行表述。谁能联系生活实际说一个分数?生1:妈妈买回一个西瓜,平均分成10份,吃了其中的3份,吃了这个西瓜的3/10。生2:银行存款利率要用到分数。师;对,那是一种特殊的分数------百分数。如;中国人民银行规定定期存款一年的年利率是1.98%。生3:全国耕地面积约占海洋面积的1/6。…… (五)小结与质疑师:你已经知道了什么?还有什么不明白的地方?有什么问题想问吗?生1:我知道了分数对于我们的生活很有用处。生2:我知道分数不是表示一个完整的数。师:为什么这样认为呢?生2:它表示一个整体与它的一部分的关系。师:说得真好!你真正理解了分数的意义。生3:我想知道分数还能表示一个整数吗?师;问得好!谁能帮他解决这个问题?生4:能1比如把一张长方形纸平均分成4份,其中的4份就是这个整体的4/4,也可以用1来表示。生5;我还想知道分数能不能像整数那样进行四则运算/师;分数也能像整数那样进行四则运算,这在我们今后的学习中即将学到。师;(课件演示,图略)从图中你可以了解到哪些信息?生1:红色部分的面积是最大长方形的1/2;生2:蓝色部分是最大长方形的1/4;生3:蓝色部分又是红色部分的1/2;生4:绿色部分和黄色部分面积相等;生5:绿色、黄色部分都是这个最大长方形的1/8,是红色部分的1/4,是蓝色部分的1/2;生6:最大长方形是红色部分的2倍,是蓝色部分的4倍,是绿色部分的8倍。
一、说教学内容:
《分数的意义》是苏教版义务教育教科书五年级下册第四单元第一课时的内容。
二、说教材
《分数的意义》是在三年级学生已经初步认识了分数,并且知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示的基础上进行教学的;重点是使学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体组成的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。纵观学生的知识基础及对教材的剖析,从而确立了该课的教学目标及教学重难点。
知识目标:通过直观教学和操作等活动引导学生经历探究分数意义的过程,理解单位“1”的含义,初步掌握分数的概念
能力目标:使学生经理有具体到抽象的认识,理解分数意义的过程,感受分数形成,体会数的发展,培养学生观察,比较,综合和抽象、概括等思维能力。
情感目标:体验学习数学的成功和愉悦,培养学生学习数学的积极情感
教学重点:理解分数的意义。
教学难点:认识理解单位“1”。
教具准备:作业纸
三、教法、学法
1、教法
学生认识事物是由易到难,由浅入深循序渐进的。学生虽然在前面的学习中对分数有了初步的认识,但要使学生理解单位“1”的概念,进一步明确分数的意义,必须遵循他们的认知规律。因此,本课坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法,并穿插自学、练习。通过动手操作、直观演示,让学生充分感知,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点,层层推进、步步深入,并在此基础上理解分数的意义,培养了学生的多种能力。
2、学法
学生学习过程的始终,都离不开学法。在本课的教学中学法的指导寓于教学过程的始终。
1、教给学生探索知识的方法。通过然后观察、讨论,比较,领悟出单位“1”不仅仅可以是一个物体、一个计量单位、还可以是许多物体组成的一个整体。达到感性认识到理性认识的升华。
2、引导学生在获取知识的同时,掌握对事物本质进行归纳总结的方法。学生讨论、观察、比较后概括出:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数,并通过操作,体会由于分的份数不同,取的份数不同,产生的分数也不同,在此基础上进一步明确分数的意义。
四、教学过程
(一)谈话导入,唤醒已知
首先,通过激趣谈话问学生,把一个饼分给4个学生,怎么分大家才公平?根据学生的已有经验明确分数是建立在平均分的基础上。
(二)探索新知,建构概念
1、观察比较,抽象单位1
为了突破这难点便于理解和认识,我先引导学生联系每个分数观察各是“把什么平均分”,关注平均分的对象,感受平均分的对象包括一个物体,一个计量单位,一个整体,其中特别注意对由一些物体组成的一个整体的理解:接着以及这些平均分的对象,说明这样的一个物体,一个计量单位,一个整体,通常看做单位1,依据各类具体事务抽象出单位1,使学生体验与认识:忍受追问上面表示的分数中,是把什么看做单位1,用具体对象支撑对抽象的单位1的理解。有具体到抽象,再把抽象的概念赋予具体对象,帮助深化理解。
2、抽象概括,归纳分数的意义。
首先,让学生用单位1平均分来分别解释、说明每个分数的含义,从抽象的层面分析、体验每个分数的含义,接着让学生综合这些分数“都是怎么得到的?”思考不同分数表示的含义的共同点,抽象分数本质的特征,然后依据交流出的本质特征,引导学生“说出怎样的数是分数”,水到渠成的概括出分数的意义。本环节主要引导学生感性认识到理性认识,由具体到抽象,逐步深化,理解分数的意义。
3、认识分数单位
4、动手操作,领悟分数的意义
让学生在作业纸上表示出不同的分数,在操作的过程中让学生体会到单位1相同却表示出了不同的分数,从而得出份数不同,取的份数不同,分数也就不同,深化分数的意义,培养学生的创新思维。
(三)巧设练习,深化新知
练习的设计有浅入深,分为基础性练习和实践性练习,不仅巩固课堂所学知识,还把学生所学知识运用到现实生活中去,让学生感受到数学与现实生活的紧密联系。
最后设计游戏,不但加深了学生对分数意义的理解,又增强了学习的趣味性,符合小学生的心理特征,同时训练学生的思维,培养了学生思维的灵活性。
分数的意义
教学内容:苏教版教材第十册
教学目标:1、使学生正确理解分数的意义,理解单位“1”的意义;
2、培养学生的观察能力;
3、培养学生的抽象概括能力。
教学 过程:
一、引入
1、米尺是用来干什么的?老师用米尺量自己的身高,看清楚,老师的身 高 能用整米数表示吗?
2、再举个例子,一个苹果平均分给三个小朋友,每个小朋友得到的个数, 能不能用整米数表示吗?
3、在日常生活中,人们进行测量和计算的时候往往得不到整数的结果,这 就需要引进一种新的数——分数。
今天,就在原来学习分数的基础上学习分数的意义。(板书课题)
二、动手感知
(一)1、四年级已经初步认识了分数,你能说出几个分数吗?
老师已经给你们准备了好多材料,这是一个饼,一个长方形,一段绳子, 你能不能从这里面选出一样,表示出1/2,会吗?(学生动手操作)
2、汇报
(1)你是怎么分的?怎么得到1/2这个分数的?1/2是多大呢?
师强调:其中的一份就是这个饼(长方形、绳子)的1/2。
(2)继续汇报
(3)除了这三种材料,你还能另选一种表示出1/2吗?
3、好,刚才有的同学分的是绳子,它们有什么共同点吗?为什么都得到1/2 呢?
师:都是平均分成两份,这样的一份就是原来的哪个东西的 ?
有没有不同的地方?
生:有的分的是 ,有的分的是 ,有的分的是 ,平均 分的对象不同。
(二)1、老师还为你们准备了另外一些学习材料,这是什么?你能表示出4只桃子的1/2吗?
还大家准备了小正方体、水彩笔,请你从这些东西中任选一样表示出它的 1/ 2,小组内一起完成。
2、汇报
(1)先请分苹果的小组来汇报,你们是怎么分的,怎么得到1/2这个分数的?
师:4个苹果,当然先要看成一个整体,平均分成几份?一份几个苹果?一份就是这 个苹果的 。
(2)分小正方体的小组汇报。
个小正方体是这 个小正方体的1/2。
(3)分水彩笔
12枝,把它看成一个整体,要得到1/2,也就是把它平均分成 份,每一份是 枝,一份就是这12枝的 。
(三)小结
通过刚才的平均分,我们都能得到1/2,为什么?它们有什么共同点吗?(揭示:平均分)
师:都是把这些物体平均分成两份,都表示这样的 ,所以用1/2来表示。不同点是什么?
(四)1、师:有的是把一个物体、一个图形、一个计量单位平均分,也可以把许多物体组成的一个整体平均分,得到1/2这个分数,假如老师要你得到3/4这个分数,你们会不会?请你们从材料中随便选一样物体也行,选许多物体组成的一个整体也行,分一分,表示出3/4。
2、汇报
(1)我们先请分一样物体的来发言,你是怎么得到3/4这个分数的?
(2)再请把许多物体看成一个整体得到3/4的来说一说。
3、刚才我们通过平均分一个物体和许多物体组成的一个整体得到了3/4,为什么它们都能得到3/4呢?有什么共同点?
(五)1/(1)、刚才我们平均分了许多物体,你能给这些物体分分类吗?分成哪几类?
(2)一张饼、一个长方形、一根绳子等我们可以用自然数“1”来表示,像4个苹果、8个小正方体、一盒水彩笔,由许多物体组成的一个整体,我们也能用自然数“1”来表示,当然要加双引号,我们通常把它们叫做单位“1”。(板书
(3)单位”1“可以表示一张饼、一个长方形、一根绳子等一个物体,也可以表示由一些物体组成的一个整体,比如说: 。
2、你联系实际想想看,你能举出一些单位“1”的例子来吗?
(六)1、下面呢,老师不要你具体动手去分了,你脑子里想一个分数,然后确定一个单位”“1
比如说:老师想一个分数9/10,确定一个单位“1”,把1米长的线段看作单位“1”,我把它平均分成10份,表示这样的9份,就是9/10,你们会吗?说给同桌听听看。
2、汇报
你想的是哪个分数?把什么看成单位“1”?
3、总结
(1) 刚才我们通过平均分一个物体,一个计量单位,或者说一些物体组成的一个整体,也就是把单位“1”平均分,得到了好多分数,那么平均分的份数呢?可以是 份、 份等等,你能不能用一个词语来概括一下,也就是把单位“1”平均分成 。
(2)你怎么知道若干份这个词的?若干份是什么意思?
表示这样的一份就是单位“1”的几分之几,表示这样的几份就是单位“1”的几分之几。
(3)什么样的数叫做分数呢?(同桌相互说)
老师请一个同学来说一下,你是怎样来定义这个概念的?
(4)看书 81页 学生读分数的意义,教师板书
这段话里,你认为哪几个词比较重要?
三、1、做练习
汇报
2、做一些操作性的小练习
信封里有一些小纸片,有红的,有白的,红色的小纸片几张?白色的呢?下面请同学们根据老师的指令正确的操作和表示,行吗?
(1)拿出六张纸片,要求红的是所有纸片饿1/6,你是怎么拿的?
(2)拿出六张纸片,要求横的是所有纸片的2/3
(3)任意拿出纸片,只要表示3/5这个分数。
还有没有跟他们都不一样的?
(4)拿出三张纸片,要求它是所有纸片的1/4。
(四)全课总结
通过这节课,你学到了哪些知识?
教学目的:
1.使学生理解分数除法的意义与整数除法的意义相同。
2.学会分数除以整数的计算方法。
教具准备:教师准备10个半块月饼的教具。
教学过程:
一、复习
1.举例说明整数除法的意义是什么?
2.根据乘法算式13438=5092,写出相应的两个除法算式。
3.举例说明分数乘以整数的意义和一个数乘以分数乘法的意义各是什么?
以上复习题可以指名回答。
二、新课
1.教学分数除法的意义。
教师出示5个半块月饼的教具,提问:
(1)每人吃半块月饼,5个人一共吃多少块月饼?怎样列式?得多少?
(2)两块半月饼,平均分给5人,每人分得多少块月饼?
教师出示两块半月饼,将它们平均分成5个半块月饼。要求学生按照教具的演示过程列式、计算。
(3)两块半月饼分给每人半块,可以分给多少人?
教师让学生到黑板前进行教具演示,再列式计算。
教师让学生观察、比较上面3道题中算式的已知数和得数,再回答下列问题:
(1)第一个算式已知什么?求什么?用什么方法计算?(已知两个因数:和5,求出它们的积为;用乘法计算。)
(2)第二个算式呢?(已知积是和一个因数是5,求出另一个因数是,用除法计算。)
(3)第三个算式跟上面哪一个算式是类似的?(跟第二个算式是类似的,也是已知积是和一个因数是,求出另一个因数是5,用除法计算)
教师:分数除法的意义是什么?它跟整数除法的意义一样不一样?(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。)
2.做教科书第30页做一做中的题目。
教师让学生自己读题、做题,做完后要问学生是怎样应用乘法算式和分数除法的意义来填写除法算式的得数的?
3.教学分数除以整数。
教师出示例1:把米铁丝平均分成2段,每段长多少米?教师:根据题意需要用什么运算来求出得数?并列出算式。(应该用分数除法来做,算式是2。)
教师:这个算式的含义是什么?米是几个米?应该怎样计算?试试看。(表示把米平均分成2段。米是6个米,实际上是把6个米平均分成2份,求每份是多少米?可以列出如下的算式(教师板书)。)
教师:说一说分数除以整数可以怎样计算?(分数除以整数可以用分数的分子除以整数。)
教师:把米平均分成2段,求每段是多少,还可以怎样计算?能不能把它转化为已学过的算法来算?(把米平均分成2段,求每段是多少米?可以看作是求米的是多少米?可以用乘法计算。)
教师:把米铁丝平均分成4段,每段长多少米?用两种方法计算。(让学生自己计算,指名两个学生板演。)
做完后,让学生讨论,就这道题来说,哪种方法可行?哪种方法不可行?为什么?
教学内容:人教新课标五年级数学下册《分数的意义》
教学目标:
1.使学生理解并掌握分数的意义。 2.使学生知道一个物体、一个计量单位、一些物体都可以看作一个整体,用单位“1”表示。
3.培养学生的抽象概括能力和初步的逻辑思维能力。
教学重、难点:
1.理解和掌握分数的意义。
2.理解单位“1”的含义。
教具准备:
相关课件。
教学过程:
一、 导入。
请学生举出几个具体的分数(老师板书),并说说各部分的名称以及同学们所了解的有关分数的课外知识等。
二、教学实施。
1.认识单位“1”。
师:(出示课件),哪位同学能在上面的图中标出1/4呢?
学生操作,并交流反馈。
学生1:我把4根香蕉看作一个整体,把它平均分成4份,每根香蕉就是这4根香蕉的1/4。 学生2:我把8块面包看作一个整体,把它平均分成4份,每份有2块,就是这些面包的1/4。学生3:我把一条线段看作一个整体,把它平均分成4段,每段就是这条线段的1/4。 师:通过刚才这几位同学表示1/4,,同学们有什么发现吗?
生:我发现都是把物体看作一个整体,把它平均分成4份,表示这样的一份。 师:(概括)对,一个图形、一个物体、一些物体都可以看作一个整体,一个整体就可以用自然 数1来表示,通常把它叫作单位“1”。
2.举例:
结合实际,引导学生说说生活中什么都可以看作单位“1”。
生:比如一个学生、一个班级的学生、一个学校的学生……,都可以看作单位“1”。 生:再比如一个苹果、一堆苹果、一车苹果……,也都可以看作单位“1”。 师:说的太好了。生活当中到处可以发现单位“1”的存在。
3.表示几份。
师:把单位“1”平均分成若干份,我们可以用分数表示其中的一份,也可以表示这样的几份,(出示课件,)请同学们按要求在相应的图中表示出3/5、2/3、4/8,并说说它们的含义。 学生交流。
4.概括分数的意义。
师:通过上面的学习,我们对单位“1”有了一个新的认识,我们知道,单位“1”可以表示一个物体,也可以表示一些物体,它可以很小,也可以很大……,而且,我们刚才列举了许多分数,那么,到底分数是一个什么样的数呢?你可以用语言来描述一下吗? 学生交流,反馈,相互补充。
总结:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。(板书)
三、练习,拓展。
1.课件出示练习内容,学生独立完成,集体订正。
2.游戏:抓糖。
师:同学们平时都喜欢吃糖,咱们现在玩一个抓糖游戏,谁抓对了,糖就奖给谁。老师现在有8块糖,请一位同学来拿出这些糖的1/2,(学生拿去),再请一位同学拿出剩下的糖的1/2,依次类推……,
师:为什么同样是拿糖的1/2,而他们拿到的糖却不一样多呢?
引导学生说出:因为单位“1”发生了变化,所以他们拿到的他们拿到的糖不一样多,
3.总结。
板书设计:
分数的意义
把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数。
教学反思:
本节课从实际生活出发,通过让学生用分数来表示一个物体、一些物体,突破了一个整体的教学,体现了数学源于生活、寓于生活、用于生活的教学理念,教学中采用了以学生为主、教师引导的教学形式,突出了学生的主体地位,使每位学生都真正参与到课堂中,体验到成功的喜悦。同时,通过一系列的练习和游戏,使教学内容得到深层次拓展,整个学习过程轻松、自然。
教学目标:
1、使学生知道分数的产生过程,理解分数的意义,能对具体情景中分数的意义作出解释,能有条理地运用分数知识对生活中的问题进行分析和思考。掌握分数单位的特点。
2、使学生感受到数学知识是在人类的生产和生活实践中产生的,培养对数学的兴趣,树立学习数学的信心。
教学重难点:
理解分数的意义。
教学难点:
对把多个物体组成的一个整体看作单位“1”的理解。
教具准备:
米尺,挂图,几张长方形、正方形的纸。
教学过程:
一、创设情境。
1、测量。
师生合作测量黑板的长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)
2、计算。
老师把一个西红柿平均分给两个同学,每人分得的西红柿的个数怎样表示?(1/2)
3、讲述。
在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的数——分数来表示,这样就产生了新的数—分数。今天,我们就来学习“分数的意义”。
二、教学实施
1、认识单位“1”。
(1)动手操作。
老师:如果用图表示,可能你们每人会有不同的表示方法,现在请你动手折一折或画一画来表示。
学生展示成果。
(2)老师投影出示图片。
老师:投影片上的这些图,你能在每一幅图上表示出它的吗?学生先小组内交流,再集体反馈。
学生甲:我把4根香蕉看作一个整体,一根香蕉是这个整体的。
学生乙:把8个苹果看作一个整体,把这个整体平均分成4份,每份两个苹果是这个整体的。
学生丙:我把12个△看作一个整体,把这个整体平均分成4份,每份3个△是这个整体的。
学生丁:我把1米看作一个整体,把它平均分成4份,其中的1份,就是1米的。
(3)概括总结。
老师:刚才同学们在表示的过程中,有什么发现吗?
学生甲:都是把物体平均分成4份,表示这样的一份。
学生乙:我发现有的是把1个图形平均分,有的是把8个苹果、12个△平均分,还有的是把1米平均分。
老师:一个图形,一个实物比较好理解,我们把它称为一个物体,那么8个苹果、12个△是由许多单个物体组成的,我们称作一个整体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(4)举例。
老师:对于这个整体,你还能想出其他的例子吗?
学生:这个整体还可以是一筐茄子、一车煤、一个年级的人数、全中国人口等。
2、概括分数。
老师:通过上面的学习,同学们对于单位“1”有了一个全新的认识,可以表示一个物体、也可以表示一些物体。整体“1”可以很小,也可以很大……
刚才同学们举了很多分数的例子,那到底什么是分数,你能尝试用文字描述一下吗?
先引导学生交流:把“谁”平均分?它表示的是一个什么样的数呢?
学生相互交流补充。
明确:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。(板书)
老师强调必须是平均分。
三、巩固练习
1、说说下面分数表示什么意义?每天睡眠时间占全天时间的1/3
头的长度占身高的1/8
2、说一说下图中的阴影部分占整个图的几分之几。
四、课堂小结
这节课我们学习了什么?师生共同回忆总结。
教学目标
1、使学生理解两个整数相除的商可以用分数来表示。
2、使学生掌握分数与除法的关系。
3、培养学生的应用意识。
教学重难点
1、理解归纳分数与除法的关系。
2、用除法的意义理解分数的意义。
教学工具
ppt
教学过程
一、激趣引入
师:同学们,老师今天给你们带来了几位好朋友,相信你们一定认识他们,让我们看看他们是谁?
课件出示唐僧、孙悟空、沙僧的图片
师:那猪八戒呢?原来他去化缘了,他在路上边走边想:如果能化得8张饼就好了!那猪八戒问什么想要8张饼呢?
引出平均分,让学生列式:8÷4=2(张)
总量÷份数=每份数
二、探究新知
1、老猪化得一张饼,如何分给4人呢?
师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成4份,求每份是多少。下面我们再来看一下这道题。
把1个饼平均分给4个人,每个人分得多少个?
师:这道题该怎样列式呢?(学生列式,师板书:1÷4)
师:1÷4表示什么意思?
生:1÷3表示把一张饼平均分给4个人,求一个人分得多少。
师:好,这道题也是把一个整体平均分成4份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?
生:1/4个。(师板书)
师:大家都认为是这样吗?(是)谁来说说你是怎么想的?
教师出示课件,学生边说边演示:我们把这个圆看作这张饼,把它平均分成4份,每人得到其中的一份,也就是这张饼的1/4。
师:请大家看,每份都是1/4,每个人得到的是多少个蛋糕呢?
生:1/4个。
师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的饼就是1/4张。
教师说明:1÷4表示把一张饼平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3张。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)
(课件出示例2)
指名读题
师:谁能列出算式?
生:3÷4(师板书)
师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。
小组操作,教师巡视指导。
师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?
(小组边汇报,边演示)
小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。
师:你能用一个式子表示一下吗?
小组1:1÷4=1/4块。
师:好。请接着汇报吧。
小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。
师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)
师:还有没有和这组方法不同的?
小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。
师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。
师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。
师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?
学生小组讨论
生:我们发现,被除数就是分子,除数就是分母。
师:你能试着表示出来吗?
生:被除数÷除数=被除数/除数(师板书)
师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?
生1:a÷b=a/b(师板书)
生2:老师,我认为还要写上b≠0。
师:为什么b≠0?
生:因为b表示除数,除数不能为0。
生:分数的分母也不能等于0。
师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)
师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?
学生观察算式,思考
生:可以。比如3/4=3÷4。
课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子。反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,
分数线相当于除号。
师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?
请学生观察黑板算式,和同学讨论。
学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。
三、巩固练习
1、用分数表示下列算式的商
(1)3÷2=()
(2)2÷9=()
(3)7÷8=()
(4)5÷12=()
(5)31÷5=()
(6)m÷n=()n≠0
2、试一试
()÷7=4/71÷()=1/37/9=()÷95/8=()÷()
3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?
4、填空
9厘米=()米59秒=()分
13分=()时5时=()日
5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。
四、全课总结
一、设计理念:
《数学课程标准》指出:数学教学,要让学生亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过数学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。在新课程要求下,数学教学不再是单一的、枯燥的、以被动听讲和练习为主的形式,而是应该引导学生自主探究与合作交流。学生在观察、操作与交流等数学活动中,逐步形成自己对数学知识的理解和有效的学习策略。
本节课我在学生对分数初步认识的基础上,以学生发展为立足点,以自我探究为主线,以求异创新为宗旨,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的'过程中,使学生观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。
二、教材分析:
《分数的意义》是在四年级学生已经初步认识了分数,并且知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示的基础上进行教学的;重点是使学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。
三、学情分析:
学生在四年级已经认识了分数,对分数的各部分名称已经了解,并且知道分数是把一个物体、一个计量单位进行平均分。在以往有关分数的教学中,感觉同学们对分数的意义的理解不是很清楚。学生也觉得分数这个东西很抽象,存在理解的误区。学生对于分数的感知很少,好多就是靠背下来的,没有亲身体会过分数的真正含义。由于分数与“除法”、“比”都有着直接的联系,意义不理解会直接影响学生的后续学习。
四、设计思路:
学生认识事物是由易到难,由浅入深循序渐进的。学生虽然在前面的学习中对分数有了初步的认识,但要使学生理解单位“1”的概念,进一步明确分数的意义,必须遵循他们的认知规律。智慧的生成需要一个理想的“融炉”,而这个融炉就是先进的教学理念和具有挑战新问题情境的结合体。因此,本课坚持以学生为主体,教师为主导的原则。通过动手操作、直观演示,让学生充分感知,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点,层层推进、步步深入,并在此基础上理解分数的意义,培养了学生的多种能力。
五、教学目标及教学重难点:
教学目标:
知识与技能:在学生初步认识分数的基础上,结合具体情境,进一步认识分数,理解单位“1”及分数的意义。
过程与方法:通过动手操作使学生经历分数形成的过程,探索分数的意义,充分感知体验分数概念中的各要素,培养学生的实际操作能力和抽象概括能力。
情感态度价值观:通过活动培养学生合作交流意识,感受数学与生活的密切联系;结合教学内容适时渗透数学文化,培养学生的数学素养。
教学重点:进一步认识单位“1”,理解分数的意义。
教学难点:理解分数的意义。
六、教学过程:
(一)、复习导入:
现在天气越来越热了,看老师给大家带来了什么?(出示西瓜图)现在要把这个西瓜合理的分给每一个同学,应该怎样做?(平均分)每位同学得到多少?()
对于这个分数你有哪些认识?(关于这个分数,我已经知道了)
【设计意图:通过复习导入,引发学生对旧知的回顾,明确分数的各部分名称。】
(二)、理解分数的意义。
1、认识单位“1”
(1)、举例平均分
师:刚才我们是把一个西瓜进行了平均分,在生活中,我们还可以把什么进行平均分?(学生举例)
估计学生会举出:把一个物体进行平均分
把一些物体进行平均分(如果学生没有说到一些物体的平均分,教师直接引导:我这里有一些笔,你能把它们平均分给两个同学吗?)
抓住学生中所说的把一些物体进行平均分的事例问:他把什么进行了平均分?和前面几个同学说的有什么不一样?你还能举出这样的例子吗?
(2)师小结揭示单位“1”:刚才大家所说的一个物体,一个图形,一个计量单位,一些物体都可以看做一个整体,这些个整体,我们在数学中,我们称它为“1”。
举例单位“1”
(3)举例单位“1”
师:谁能说说我们还可以把哪些想成一个单位1。
老师这里还有一些句子,读读看,它们各把什么看作单位“1”。
书上练习:上半月完成全月计划的
男工人数占全厂工人总数的
一条路,已修好全长的
小丽看了一本书的
(4)总结单位“1”
刚才我们列举了这么多的单位“1”,老师这里用一首儿歌概括了,读读看:
一条道路一个梨……
一吨稻谷一克米……
一片树林一群鸡……
都可看做单位“1”。
自己读读看。看懂了吗。这里的指的是一个物体一个计量单位
(5)单位“1”与数字1的比较
师:刚才我们说了那么多的单位1,那么单位“1”和以前所学的数字1有什么区别。
【设计意图:通过大量的举例,理解单位“1”,在原有的基础上,对单位“1”有更深更广的认识。】
2、揭示分数的意义
(1)集体演示分数
老师这里有一些笔,想把它平均分给两个同学,每个同学分到多少?
如果我想平均分给4个小朋友,该怎样做呢?(指生来做)
其中的一份就是,两份呢?
(2)学生独立动手操作得到分数
利用手中的材料,你有多少种不同的平均分的方法?可以得到哪些分数?
把找到的分数和小组同学进行交流,说清你是怎样找到分数的?
活动材料:6只小狗8只梅花鹿10只蝴蝶4块橡皮
(3)汇报
学生汇报:
渗透分数单位明确分数单位
同一个单位“1”平均分的份数不同可以得到不同的分数
同样的分数,由于单位“1”的不同,每份所表示的具体数量也不同
【设计意图:让学生在动手操作中,了解分数,理解分数的意义,明确同一个单位“1”平均分的份数不同可以得到不同的分数,同样的分数,由于单位“1”的不同,每份所表示的具体数量也不同】
(4)具体环境中理解
老师这里有一句话,一起来看一看:中桥小学五一班共有学生20人,其中男生13人,男生的人数占全班总人数的几分之几?你是怎样想的?
(5)揭示意义
师小结:我们把单位“1”平均分成若干份,表示这样的一份或几份的数,就叫分数。这就是分数的意义。一起读一读。(板书)(如果开始学生说不出,在这里揭示:分母表示什么?分子表示什么?)
【设计意图:学生由具体的事物抽象出语言形式,是思维的一个提升、概括。】
(三)、生活中的分数:
1、用线段上的点表示分数
2、数学与生活密不可分,读读看。学生在自由读题后指生回答。
果品生产是平谷农业经济的支柱产业和农民致富的主要来源,平谷建成了大桃、板栗、红杏、苹果等8大果品基地,年总产量1.6亿公斤,约占北京市总产量的1/4,连续12年居北京市首位,是全国果品百强区之一。表示把北京市果品总量看做单位1,平均分成4份,平谷的果品总量占其中的1份。
【设计意图:让学生了解到分数不止在数学课堂中体现,在生活中也有着广泛的应用,从而激发对家乡的热爱。】
(四)、数学小知识
分数在我国很早就出现了,并且用于社会生产和生活。我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。中国使用分数比其他国家要早出一千多年。所以说中国有着悠久的历史,灿烂的文化。
【设计意图:数学小知识的介绍,不仅让学生了解数学的文化发展,更能进一步激发学生学习数学的热情。】
(五)、看书:这节课我们所学的内容是75页到77页,完成练习十二的1、2、4、5、8题。
(六)、游戏下课。
课题一:(一)
教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受“知识来源于实践,又服务于实践”的观点。
教学重点 理解。
教学用具 教材第84~85页有关的投影片、线段图等。
教学过程
一、创设情境
1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。
2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。
3.揭示课题
在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。
二、探索研究
1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:
(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?( )
(2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )
(3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?
如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?
2、进一步认识单位“1”。
以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:
(1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?
(2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?
(3)练习:说出下图中涂色的部分各占整体的几分之几。
● ●
●○○○○○ ● ●
●○○○○○ ● ●
● ○
● ○
● ○
3.揭示。
(1)观察以上教学过程 所形成的板书。
一个物体
计量单位 单位“1”
一些物体 ★★★★
告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位“1”。(板书:单位“1”)
(2)反馈。①在以上各图中,分别是把什么看作单位“1”?② 、 、 各表示什么意义?③议一议:什么叫做分数?
(3)概括并板书。把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
4.练习。练习十八第1、2、3题。
5.教学分数各部分名称、分数单位。分数的读、写法。
(1)教师任意写出几个分数,让学生说出分数各部分的名称。
(2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?
(3)认识分数单位,初步了解分数单位的特点。
练习:① 的分数单位是( ),它有( )个 。
② 的分数单位是( ),它有( )个 。
③( )个 是( )。
④ 是( )个 。
(4)想一想:读、写分数的方法是怎样的?
读作 ,表示 个 。
读作 ,表示有 个 。
三、课堂实践
1. 表示把( )平均分成( )份,表示这样的( )份的数。
2. 读作( ),分数单位是( ),再添上( )个这样的单位是整数1。
四、课堂小结
1、什么叫做分数?如何理解单位“1”?
2、什么是分数单位?分数单位有什么特点?
五、课堂作业
练习十八第5、6题。
课题二:(二)
教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。
教学重点 理解。
教学过程
一、 创设情境
1.用分数表示图中阴影部分。
▲▲ ▲▲
△△ ▲▲
2.口答:什么是分数?如何理解单位“1”?
3.填空。
是( )个 。 的分数单位是( )
7个 是( )。 的分数单位是( )
二、揭示课题
出示学习内容及学习目标。板书课题:。
三、探索研究
1.认识用直线上的点表示分数。
分数也是一个数,也可以用直线(数轴)上的点来表示。
(1)认识用直线上的点表示分数的方法。
①画一条水平直线,在直线上画出等长的距离表示0、1、2。
②根据分母来分线段,如果分母是4,就把单位“1”平均分成4份。如: 、 :
0 1 2
(2)提问:如果要在直线上表示 ,该怎样画?启发点拨。
①先画什么?再画什么?
②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?
③ 应用直线上的哪一个点来表示?
(3)如果要在这条直线上表示分母是10的分数,该怎么办?
这条直线上0~1之间的第七个点表示的分数是多少?
2.练习。
(1)教材第87页下面“做一做”的第2题。
(2)用直线上的点表示 、 、 、 。
3.教学例1。
(1)指名读题,帮助学生理解题意。
(2)出示讨论题,同桌讨论。
①这题中把什么看作单位“1”?
②1人占这个整体的几分之几?
③5人占这个整体的几分之几?
(3)汇报讨论结果,板书答语。
(4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位“1”是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。
4、练习。教材第88页的“做一做”。
四、课堂实践
1.教材第87页的“做一做”。
2.用直线上的点表示 下面的分数: 、 、 、 、 。
3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?
五、课堂小结
1.用直线上的点表示分数的方法是怎样的?
2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?
六、课堂作业
练习十八第4、7、8题。
课题三:分数与除法的关系
教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。
教学重点 理解和掌握分数与除法的关系。
教学用具 投影片(教材第89页的饼图)
教学过程
一、创设情境
1.填空。
(1) 表示( )。
(2) 的分数单位是( ),它有( )个这样的分数单位。
2.计算。(1)5÷8 (2)4÷9
二、揭示课题
我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识“分数与除法的关系”。(板书课题)
三、探索研究
1.教学例2
(1)读题后,指导学生根据整数除法的意义列出算式。板书:
1÷3=
(2)讨论:1 除以3结果是多少?你是怎样想的?
(3)教师画出线段示意图,帮助学生理解。
1米
?
通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。
(3)写出答语。
2.教学例3。
(1)读题后,引导学生列出算式:3÷4。
(2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。
(4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,
3÷4=(块)。
由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样一份的数。
3、认识分数与除法的关系。
(1)引导学生观察1÷3=、3÷4=这两道算式,想一想:
①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?
②用分数表示商时,除式里的被除数、除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)教师总结,学生发言,归纳出以下三点:
①分数可以表示整数除法的商;
②在表示整数除法的商时,要用除数作分母、被除数作分子;
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调“相当于”一词)
分数与除法的关系可以表示成下面的形式:
板书:被除数÷除数=
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?
板书:a÷b=(b≠0)
(4)想一想:这里的b能为0吗?为什么?
启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b≠0。
(5)再想一想:分数与除法有区别吗?区别在哪里?
着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。
4、学生阅读教材,质疑问难。
四、课堂实践
教材第91页中间的“做一做”。
五、课堂小结。
引导学生回顾全课,说说学到了什么,自我总结,教师作补充。
六、课堂作业 。练习十九第1~3题。
课题四:分数与除法关系的应用
教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道“事物间在一定的条件下是可以相互转化的观点”。
教学重点 求一个数是另一个数的几分之几的应用题。。
教学过程
一、创设情境
1.口答:30分米=( )米 180分=( )时
练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。
2.说一说:分数与除法的关系?
3.用分数表示下面各算式的商。
(1)7÷9(2)4÷7(3)8÷15(4)5吨÷8吨
二、揭示课题
这节课学习“分数与除法关系的应用”。(板书课题)
三、探索研究
1.出示例4。
(1)出示例4并审题。
(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?
让全体学生尝试练习。
(3)集体订正。订正时让学生说说是怎样想的?
(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?
重点说明当两数相除得不到整数商时,其结果可以用分数表示。
2.练习教材第91页下面的“做一做”。
3.教学例5 。
(1)出示教材第92页复习题,让学生独立列式解答。
集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?
板书:30÷10=3
答:鸡的只数是鸭的3倍。
(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。
讨论后师生共同评价,主要有两种方法:
①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。
②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:7÷10=。
(3)比较复习题与例5异同点。
通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。
4、练习。教材第92页“做一做”第1、2题。
四、课堂实践
1.在括号里填上适当的分数。
8厘米=( )米 146千克=( )吨 23时=( )日
41平方分米=( )平方米 67平方米=( )公顷 37立方厘米=立方分米
2.五(1)班有女生25人,比男生多4人。
(1)男生占全班人数的几分之几?
(2)女生占全班人数的几分之几?
(3)男生人数是女生人数的几分之几?
五、课堂小结
1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?
2、求一个数是另一个数的几分之几应用题的解答方法是什么?
六、课堂作业
练习十九第4~7题。
七、思考题。
练习十九第8题及思考题。
课题五:分数大小的比较
教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。
教学重点 掌握比较分数大小的方法。
教学用具 投影片(教材例6、例7直观图)
教学过程
一、创设情境
1.教材第93页复习题,请一名学生口答。
2.看图写分数,并比较分数的大小。
0 1
二、揭示课题
以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究“分数大小的比较”方法。(板书课题)
三、探索研究
1.同分母分数的大小比较。
(1)比较 和 的大小。
出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )
如果没有直观图,该怎样比较 与 的大小呢?
因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。
(2)用类似的方法引导学生比较 和 的大小。
(3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)
板书:分母相同的两个分数,分子大的分数比较大。
2.练习:教材第93页“做一做”。
3.同分子分数的大小比较。
(1)比较 和 的大小。
①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。
② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。
(2)比较 和 的大小。
用类似的方法进行比较并得出结论: < 。
(3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?
板书:分子相同的两个分数,分母小的分数比较大。
4、练习:教材第95页的做一做。
四、课堂小结
比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。
五、课堂实践
1.练习二十第1题。
2.练习二十第3题。
六、课堂作业
练习二十第2、4题。
七、思考练习
在括号里填上合适的数
<( ) < < > >
一教学内容:
分数的产生
教材第60页的内容。
二教学目标:
1.使学生知道分数的产生过程。
2.使学生感受到数学知识同样是在人类的生产和生活实践中产生的。
三重点难点:
理解分数的产生。
四教具准备:
米尺,挂图,几张长方形、正方形的纸。
五教学过程:
(一)导入
同学们,我们在三年级时已经初步认识了分数,还记得我们都学了分数的哪些知识吗?
学生通过回忆说出已学过的分数知识。
1.复习分数各部分名称。
(1)举一个分数的例子。
(2)以为例,说说分数的各部分名称。
2……分子
—……分数线
3……分母
(3)还可以用什么来表示分数?(用图、线段或正方形来表示分数。)请你用线段图表示。
把正方形纸平均分后,画出阴影,用分数表示阴影部分。
(二)教学实施
1.测量。
师生合作测量黑板的长,观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)
2.计算。
老师把一个西红柿平均分给两个同学,每人分得的西红柿的个数怎样表示?(l÷2的结果不能用整数表示。)
3.讲述。
在人们实际生产和生活中,人类在测量和计算的时候,往往不能得到整数的结果,这就需要用一种新的数来表示,这样就产生了新的数—分数。最初,人们只认识一些简单的分数,如二分之一、三分之一等。我国是世界上发明和使用分数比较早的国家之一。
4.资料介绍。
请学生结合自己课前查找的资料说说分数是怎样产生的。
(三)课堂小结
同学们相互交流本节课的学习收获。