分数乘法教案【优秀8篇】

作为一无名无私奉献的教育工作者,可能需要进行教案编写工作,教案是备课向课堂教学转化的关节点。教案要怎么写呢?如下是勤劳的小编有缘人给大家找到的8篇分数乘法教案的相关文章,欢迎参考阅读,希望可以帮助到有需要的朋友。

教学重点。 篇1

使学生理解分数乘整数的意义及计算方法。

分数乘法教案 篇2

练习内容:练习二中的第5~10题

练习目标:使学生熟练掌握分数乘法的计算方法,并能正确地进行计算。

练习过程:

一、基础练习

1、口算

××××

14×15×××5

2、计算

××427×

过程要求:

(1)请三位学生上台板演,其余学生做在练习本上。

(2)集体反馈,学生计算过程。

(3)着重强调约分的操作步骤。

二、专项练习:

完成练习二第5~10题

1、第5题

(1)提问各算式的意义。

要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?

(2)将结果写在书上。

2、第6题

(1)认真审题,弄清题意。

(2)分别说明三个问题各属于什么类型的问题。

(3)列式计算。

3、第7题

学生独立完成后,说一说你是怎样做的?

4、第8题

学生列式计算,教师巡视,然后集体订正。

5、第9题

(1)学生判断正误,并说明原因。

(2)改正算式。

6、第10题

(1)学生列式计算,教师巡视进行个别指导。

(2)说一说你有什么体会。

三、课后作业设计:

一、计算。

×××14×

×120××24×18

二、列式计算

1、米的是多少米?

2、千克的是多少千克?

3、吨的是多少吨?

三、解答下列问题。

1、一辆汽车每小时行驶60千米,小时行驶多少千米?

2、一个长方体长米,宽米,高米,它的体积是多少立方米?

课后反思:

分数乘法教案 篇3

一、教材分析:

六年级上册第二单元围绕"分数乘法"这个主题。本单元教学内容包括三部分内容:分数乘法,解决问题和倒数。本单元是在整数乘法,分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数,小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。

根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。即把解决"求一个数的几分之几是多少"这一类问题组成"解决问题"一个小节,通过教学使学生理解这类问题的数量关系,掌握解题思路。与整数,小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈现分数乘法的。计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间。

学情分析:

六年级的学生已经掌握整数乘法,小数乘法的计算,对于分数有一定的理解,能够在现实情境中体现和理解数学的理念。思维已经向抽象发展,需要学习透过事物表象揭示事物的本质。

二、单元目标解读

根据第三学段提出的"计算和运用"目标和本单元的特点确定本单元的教学目标:

1、理解并掌握分数乘法的计算方法,会进行分数乘法计算。

2、理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。

3、会解答求一个数的几分之几是多少的实际问题。

4、理解倒数的意义,掌握求倒数的方法。

本单元的教学重点,难点是:

1、掌握分数乘法的计算方法,会进行分数乘法的计算。

2、会解答求一个数的同分之几是多少的实际问题。

3、理解和掌握求倒数的方法。

三、主题单元教学构想:

(一)注意三个原则

1、在已有知识的基础上,帮助学生自主构建新的知识。

2、让学生在现实情景中学习计算。

3、改变学生学习方式,通过动手操作,自主探索和合作交流的方式学习分数乘法。

(二)设计思路

本单元教学内容计划用15课时。

第一部分:分数乘法(7课时)

1、通过直观与操作帮助学生理解分数乘法的算理,会正确进行计算。

2、加强自主探索与合作交流。

第二部分:解决问题(5课时)

1、紧密联系分数乘法的意义,理解和掌握解决问题的思路与方法。

2、借助线段图帮助学生理解数量关系。

第三部分:倒数的认识(1课时)

1、让学生充分观察讨论,找出算式的特点。

2、特别理解"互为倒数"的含义

第四部分:整理和复习(2课时)

1、以知识整理措施形式回顾本单元的主要学习内容。

2、安排练习。

四、教学反思

"分数乘法"是这一单元的核心内容,不仅分数除法是以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握分数乘法具有重要的意义。教学本单元后我的感受是:

1、分数乘法解决问题对单位"1"的理解,重点应放在在应用题中找单位"1"的量以及怎样找的上面。为以后应用题教学作好辅垫。

2、在以后教学前我还要深钻教材,把握好课本的度。

3、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。

分数乘法教案 篇4

本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

分数与整数相乘

用乘法求几个相同分数的和(例1)

用乘法求整数的几分之几是多少(例2)

求一个数的几分之几是多少的实际问题(例3) 练习八

分数乘分数

分数乘分数(例4、例5)

分数连乘(例6) 练习九

倒数

倒数的意义,求倒数的方法(例7) 练习十

整理与练习

教材在编排上有以下特点。

第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

第三,编排倒数知识,为分数除法作准备。

分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

一、 例1着重教学分数与整数相乘的算法。

首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。

例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

二、 例2着重教学用乘法求一个数的几分之几是多少。

10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

三、 例3用分数乘法解决实际问题。

例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

四、 例4、例5构建分数乘法的计算法则。

分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

五、 例6教学分数连乘的算法和技巧。

例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

六、 例7教学倒数的知识。

倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的`方法。

分数乘法的教案 篇5

教学目标:

1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

教学重点:

掌握分数乘整数的计算方法。

教学难点

理解分数乘整数和一个数乘分数的意义。

教学准备:

课件。

教学过程:

一、情境创设,探求新知

(一)探索分数乘整数的意义

1.教学例1(课件出示情景图)

师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2.小组交流,汇报结果

3.比较分析

师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:

生1:每个人吃个,3个人就是3个相加。

生2:3个个相加也可以用乘法表示为提出质疑:3个相加的和可以用乘法计算吗?为什么?

预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

引导说出:这两个式子都可以表示“求3个相加是多少”。

师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4.归纳小结

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。

(二)分数乘整数的计算方法

1.不同方法呈现和比较

师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的'解题方法回顾一下,的计算过程用式子该如何表示?预设:

生1:按照加法计算

师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个

2.归纳算法

师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

3.先约分再计算的教学

师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

预设:一种算法是先计算再约分,另一种是先约分再计算。

师:比较一下,你认为哪一种方法更简单?为什么?

小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。

二、巩固练习,强化新知

1.例1“做一做”第1题

师:说出你的思考过程。

2.例1“做一做”第2题

师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

三、探索一个数乘分数的意义

教学例2(课件出示情景图)

(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

预设1:求3桶共有多少升?就是求3个12 L的和是多少。

预设2:还可以说成求12 L的3倍是多少。

预设3:单位量×数量=总量,所以12×3=36(L)。

(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的是多少。”

(3)出示第2小题学生自练。引导说出:“12×

表示求12 L的是多少。”在这里都是把12 L看作单位“1”。

(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

四、课堂练习,深化理解

1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克?

师:你能说说这个算式表示的意义吗?“求3千克的是多少。”

2.比较两种意义

出示:一袋面包重千克,3袋重多少千克?

师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

预设1:一个是分数乘整数,另一个是整数乘分数。

预设2:它们表示的意义相同但有所区别。

引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

师:那么,它们有什么是相同的呢?(计算方法和结果)

【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。

五、课堂小结,拓展延伸

1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

2.谁会用含有字母的式子表示分数乘整数的计算方法?

【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。

分数乘法教案 篇6

教学内容:第45页例题4、5

教学目标:

1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

教学重点、难点:

分数乘分数的计算法则。

对策:

使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

一、 复习

1、计算下列各式

1/15╳5= 2╳2/3 = 7/8 ╳14= 15/6 ╳24=

2、说说整数与分数相乘的计算方法?先约分再计算还是先计算再约分方便?

二、 新授

1、出示例题4题目和图。

2、理解题目意思。

3、你知道左边图中画斜线的部分占1/2的几分之几?是这张纸的几分之几?你是怎样想的?

4、右边呢?

5、你能看图用算式来表示结果吗?填在书上。组织交流。

6、总结:求一个分数的几分之几是多少,也可以用乘法计算。

7、探究:观察这两个算式,猜才分数与分数相乘是怎样计算的?

学生说出自己的猜想。

验证猜想,教学例题5。

(1)出示例题5

(2)在图中画斜线表示计算结果,再填空。

(3)组织交流:你发现积的分子、分母与两个因数的分子、分母各有什么关系?

(4)总结得出:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

三、巩固

1、出示 1/42/3 8/93/4

2、学生独立完成,指名板演

3、可能出现两种:先乘再约分 或先约分再相乘

引导学生比较这两种方法谁更好?如果是24/7755/8呢?再次体会到先约分再计算比较简便。

4、介绍简便书写格式,发现可以在算式上直接约分,再计算,提高速度。

四、比较

出示2/113和45/6,先计算,再比较,分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

所以不管上分数乘整数还是分数,都可以看作是分数乘分数的计算方法来计算。

五、巩固提高

您现在正在阅读的苏教版《分数乘法》第四课时教学设计文章内容由收集!本站将为您提供更多的精品教学资源!苏教版《分数乘法》第四课时教学设计1、第46页上的练一练

先独立计算在书上,指名板演,再组织交流。

2、第48页上的第1题

读题先在图中表示出来,再列式计算。组织交流想法。

3、第48页上的第3题

先独立判断,将不对的改正过来。组织交流:是否正确?错在哪里?怎样改?最后是多少?

4、第48页上的第4题

先独立计算,再组织交流:上下两题有什么相同的地方?结果怎样?

六、布置作业: 练习九 2、5

课前思考:

教学例4和例5时,我想如果借助投影仪依次呈现长方形图,可能会对学生思考问题有帮助,特别是对于一些学习困难生来说,这样便于他们直观地看出所求部分占了这张纸的几分之几。当然,最后还是要让学生从直观图中抽象出本质的东西,即认识到分数与分数相乘的计算方法。

在试一试的教学中,要分三个层次进行。第一层次是计算分数乘分数时用先约分再计算的方法;第二层次尝试用分数乘分数的方法计算分数乘整数;第三层次学习直接在题中约分的方法来计算分数乘法。估计这么多的计算方法一下子呈现在学生面前,会使一部分学生不知所措。课中教师要多关注学生学习情况,及时调整教学行为。

课前思考:

例4的教学可分三步进行,第一,看图理解1/2的1/4和1/2的3/4表示的意义,联系图弄清分别是这张纸的几分之几。第二,进一步明确求1/2的1/4或1/2的3/4是多少,也可以用乘法。第三,前两步的思考过程完成教材上的填空,建立关于分数乘分数计算方法的初步猜想。

例5可以根据例4的猜想,算出算式的积,再通过画图验证。教学时让学生观察比较几个算式的因数和积,通过交流归纳出分数乘分数的计算方法。

在介绍简便书写格式,发现可以在算式上直接约分再计算,学生可能在整数乘分数时会把整数同分子约分,教学时要进行强调。

课后反思:

本节课在教学时,我借助直观的图形,不仅让学生掌握分数与分数相乘的计算方法,更重要的是让学生理解分数乘分数的含义。并在例题教学之后增加了一个画一画环节----(1)教师写一个分数乘分数的算式,让一个学生上黑板画图表示算式的意义,要求边画边说为什么怎样画;(2)再写一个分数乘分数的算式,让全体学生独立画图表示,再同桌交流,最后指名交流。这样学生对分数乘分数的意义有了更深的认识。

在第48页第4题练习时,加强了分数乘法与分数加法的对比,强化计算方法区别,防止学生对两种计算出现混淆。

课后反思:

反思本节课的教学,在例4的教学中由于要借助直观图来思考1/2的1/4和1/2的3/4是这张纸的几分之几,所以忽略了指导学生理解1/2的1/4和1/2的3/4所表示的意义,这是今天这节课上的一处败笔。因为对于分数乘分数的计算方法的推导和理解、运用,对于学生来说反而不存在太大的问题。

从学生作业情况来看,遇到整数乘分数时,往往出现错误,分析原因是计算时不会把整数改写成分母是1的分母来计算,出现分子和分子约分的现象;还有些学生约分时仍存在错误,这样就造成乘法计算错误。

估计明天的课上计算分数连乘时问题会更多,教学时要思考对策。

课后反思:

通过教学,学生能理解分数乘分数的意义,掌握分数乘分数的计算方法,并通过学习分数乘分数的计算方法适用于分数与整数相乘,体会数学知识的内在联系,感受数学知识和方法的应用价值。

对于能约分的可以直接在题目上约,课堂上进行了讲解和示范,但在做作业时考虑到有部分学生约分时容易出错,我还是让学生写出了分母和分母相乘,分子和分子相乘的那一步,再约分,最后计算。从作业的反馈情况来看学生的计算的正确率也比较高

分数乘法教案 篇7

教学内容:课本练习四的第6~10题。

教学目的:

1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

2.培养分析能力,发展学生思维。

教学重点:正确分析数量关系,找准单位1

教学难点:依题意正确画图教学过程:

一、复习。

1.先说出下列各算式表示的意义,再口算出得数。

2.指出下面每组中的两个量,应把谁看作单位1。

(1)梨的筐数是苹果的。

(2)梨的筐数的和苹果的筐数相等。

(3)白羊只数的等于黑羊的只数。

(4)白羊的只数相当于黑羊的。

3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

(1)有40筐苹果,梨的筐数是苹果的。()?

(2)梨的筐数是和苹果的筐数相等,有40筐。()?

(3)有40只白羊,白羊的只数的等于黑羊的只数。()?

(4)白羊的只数相当于黑羊的,有40只黑羊。()?

二、新授。

1.出示例3。

小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

(1)指名读题,说也已知条件和问题。

(2)怎样用线段图表示已知条件和问题。

先画一条线段,表示谁储蓄的钱数?为什么?

学生回答后,教师画线段图。

再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

教师画:

(2)分析数量关系。

引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

(3)确定每一步的算法,列式计算。

①求小华储蓄的钱数怎样想?

引导学生回答:根据小华储蓄的钱数是小亮的

把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

(元)

②求小新储蓄的钱数怎样想?

引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

(元)

把上面的分上步算式列成综合算式,该怎样列?

(元)

(4)检验,写答语。答:小新储蓄了10元。

2.做一做。

让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

3.小结。

从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

三.巩固练习。

完成练习四的第6、7题。

四、全课小结。

这节课我们共同研究了什么?

解答这类分数乘法两步应用题关键是什么?

五、布置作业。

完成练习四的第8~10题。

教学反馈:

分数乘法教案 篇8

教学目标:

1、能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的问题的数量关系。

2、会用线段图分析分数乘法一步应用题的数量关系。

3、经历分析数量关系的过程,提高学生分析能力与解决问题的能力。

教学过程:

一、创设情境,生成问题

师:同学们,我国人多地少的矛盾日益突出,所以应控制人口增长并需要保护好耕地。据统计,2003年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的2/5.我国人均耕地面积是多少?谁愿意帮老师解决这个问题吗?(学生积极举手发言)

师:这是用分数乘法的知识来解决生活中的实际问题,这节课我们一起来进行有关的知识的学习,揭示并板书课题:

二、探索交流,解决问题

①、从题目里你知道了哪些信息?需要解决的问题又是什么?

②、要解决我国人均耕地面积是多少平方米,就要分析其中的条件和问题,怎样分析呢?(用线段图分析数量关系)。

师出示课本的线段图。

③、你会表示我国人均耕地面积吗?(生动手画图指名板演)

④、给大家说说你是怎样表示的?

⑤、从线段图中你还知道什么?(师出示)“要求我国人均耕地面积,就是求……”(指多名说)

(师出示)“求2500的2/5是多少?“ ⑥、你们会算吗?动手试试。(指名板演): 2500x2/5=1000(平方米)

为什么要这样算?还有其它方法吗?(预设:2500÷5×2)

⑦、通过计算知道了2003年我国人均耕地面积是1000平方米,你知道我国人均耕地面积减少的原因是什么?

结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

三、巩固应用,内化提高。

1、一头鲸长28米,一个人的身高是鲸体长的2/35 。这个人的身高多少米?

①、找出单位“1”,谁能解决,动手试试

②、列式解决,讲评。

2、练习四第2题:让学生先找出题目中隐藏的单位“1”——全世界的丹顶鹤数2000只。

3、练习四第3题:让学生先找到单位“1”,再独立列式解答。

四、回顾整理,反思提升

师:这节课你们一定有不少的收获吧,谁能说说?

板书设计:

求2500的2/5是多少?2500x2/5=1000(平方米)

一键复制全文保存为WORD