身为一名优秀的人民教师,我们需要很强的教学能力,写教学反思可以很好的把我们的教学记录下来,教学反思我们应该怎么写呢?
鸡兔同笼问题是我国古代数学名著《孙子算经》中出现的� 教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并通过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。
本节课我依然遵循数学学习的规律,从较简单的问题入手,由易入深,先让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼情况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的变化,脚的数量也跟着变化的规律。通过展开小组讨论,引导学生从表格中找出等量关系式,运用以往学过的方程知识,用方程解决鸡兔同笼的问题。然后采取自学的方法体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或集体的智慧在这里得到展现,最后了解古人的解法“抬腿法”,然孩子感受古人的无限智慧。方程解、假设法对于大部分学生来说至少有一种方法是他自己理解或掌握的。
在这节课的实际操作中由于我课前准备不够充分,或者驾驭课堂的能力有限,太流程化,没有顾及到每一位学生。胡子眉毛一把抓,没有突出重点。比如孩子们在表演网络解决法事先准备的就不够充分,导致当堂搞砸。在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的情况。由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。小组合作学习中我觉得自己调控不到位,如时间的把握、学生合作过程的控制、合作学习的效果等;今后在课堂教学中,我会加强小组合作的建设,让小组合作学习有目标,有过程,有结果。
反思本节课的教学,在以后的教学中我会扬长避短,不断突破,使教学走上一个新台阶。
《鸡兔同笼》问题向学生提供了现实,有趣,富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,教学时激发学生展开讨论,应用猜测,列表,假设等多种方法,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找出适合自己的解题策略,并在合作交流学习的过程中积累解决问题的经验,掌握解决问题的方法,使学生共同学习,共同进步,共同提高,把所学的知识运用到生活中,用数学的眼光看待身边的事物,体会学习数学的价值。这节课主要体现以下几个方面:
1、充分调动学生的积极性。
当问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。体现了学生是学习的主人。
2、关注每一个同学的发展。
由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出好的方法;对于比较优秀的学生,让他们根据题目的条件灵活选择适当方法。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。
“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材六年级上册中。对学生尤其是基础不好的学生来说有一定的难度,特别是用假设法解答,学生理解起来很难,为此我渗透数形结合的思想方法,采取画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。
3、体会到数学就在我们身边。
通过学习,使学生知道了假设的数学思想不仅可以解答古代趣题——鸡兔同笼问题,还能解答我们身边的问题。拓宽学生对鸡兔同笼问题的认识,帮助学生建立数学模型,掌握解决这一类问题的方法。
另外在实际教学中遇到的困惑:
1、学生在学习例题时往往会出现刻意模仿老师解题方法而不是真正了解假设法的解题思路,体会不了其中转换的数学思想,进而出现了会列算式但不知道算式的真正含义。
2、对于课堂上学生独立思维的训练,也就是我们常说的“扶”与“放”的矛盾,由于本节课是一节逻辑思维很强的新授课,对于一部分程度较好的学生,“放”开思考与探索学生完全能独立完成,但对于程度较弱的学生,“放”只能使他无从下手,糊涂的上完一节课。那么对于本节课堂如何才能做到两头兼顾呢!
3、《数学广角》是一般是不作为考察范围之内的,那么教师在教学本单元教学应该怎样对于课堂定位,知识点应该教学到什么程度也是很多老师在实际教学中的一个困惑。
数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题就是这样一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。以下是我上完课的几点体会:
一、大敢转换情境,提高情境“知名度”。
生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。课堂教学中教师要创设学生喜闻乐见的教学情境,使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。还要注重对学生进行引导,让学生通过观察、操作、讨论、思考发现并掌握知识,时刻把学生推到学习的主体地位,在一个恰当的主题中学习数学,发展能力。基于这一点,本节课的内容安排在“数学与生活”当中,用在生活中经常遇到的一些问题,来引入(幻灯出示:)
1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?
2、12张乒乓球台上同时有34人正进行乒乓球比赛,正在进行单打和双打比赛的球台各有几张?
类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了,再课件出示《孙子算经》及鸡兔同笼问题,但同时又聪明地把数改小了:今有鸡兔同笼,上有八头,下有二十二足,问鸡兔各几何?一石激起千层浪,鸡兔怎能同笼?学生的探究欲望马上调动起来,这时,又让学生了解“经典”,感受“经典”。
二、鼓励参与,在合作中提高学习效率。
根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,我主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,兵教兵,通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。大部分学生学会了,这是很让我感到激动的,因为毕竟鸡兔同笼问题比较难。
三、关注每一个学生的发展,提高课堂教学的生成性。
由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同一问题中,学生的认知水平也有不同。在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:逐一列表法、取中列表法、假设法、列方程、画图法及古人的砍足法,最后比较哪种算法比较好。这样教学既培养了学生探究能力和小组合作能力,又体现了算法多样化与优化,也让不同的学生在同一节课中都有不同程度地提高。
总的来说,本节课从学的角度呈现学习内容,合理安排教学过程,提供操作材料,拨动学生心弦,把学习的主动权交给学生,让学生在合作学习的活动中主动完成知识的建构过程。因此,在整堂课中,学生学得兴趣盎然,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
但教学中也存在着很多问题,反思如下:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等。
2、学生汇报时,要多培养学生质疑能力,听不明白的及时向小老师提问,及时解决不懂的问题。
3、要注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。
鸡兔同笼问题是我国民间� 现作为数学教材内容《数学广角》,对于我班大多数学生来说有比较大的难度,原因一,它原先是奥数内容,奥数学习学生感觉很难,思想上存在一个怕字。二是班级学生整体基础不扎实,分析问题解决问题能力较弱。三是学生学习习惯不良,缺乏一种积极进取勇于探索的意志。针对上述学生现状,我在教材的处理和目标的制定上,主要是让学生通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发学生学习数学的兴趣,同时通过多角度地思考,让学生尝试用不同的方法去解决鸡兔同笼问题,体会代数方法的一般性,并且在解决问题中,让学生经历猜测列表假设或方程解的过程,培养学生的逻辑推理能力。
反思本节课,最突出的一个亮点是在解决问题中引导学生思考更具逻辑性和一般性的解法,即假设法和列方程的解法。教学中,当学生经过猜测,并列表进行验证后,提出:你还有不同的解法吗?在给学生约五分钟思考或同学互助后,再请学生汇报。用假设法解答,采用结合多媒体演示,让学生理解鸡兔同笼问题的解题思路,特别指出的是让学生弄清假设全部是鸡或兔时,实际总脚数与假设情况下的总脚数之差表示什么,进而推导出鸡、兔的只数。列方程解鸡兔同笼问题,由于数量关系非常明确,思路更清晰,便于学生理解,这种方法更具有一般性,教学中重点让学生明确设一个量为X,另一个量是总头数减X,然后根据只数与脚数之间的`关系式列出方程并求出方程的解。
但本节课还存在较多不足。首先是教学时间调控欠合理。由于教学内容的限制,课堂上让学生经历猜测、列表、假设或方程解的过程,尝试用不同方法解决问题,最后找到合理解决问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中的实际问题。所以就只好把这个问题作为一个课后延伸,让学生收集生活中的类似鸡兔同笼问题,待到下一节课再研究。其次课堂预设对学生估计不足。用假设法解决问题时,实际脚数与假设情况下总脚数之差的交流讨论,用时过多,影响后面的进程,导致与生活中类似的鸡兔同笼问题草草过场。第三,多媒体课件的使用,虽然帮助了学生非常直观地理解了假设法的这种思维过程,让复杂问题简单化了,但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成了自己的一种解决这类知识的模型,多数学生并没有完全理解或理解得比较模糊。
鸡兔同笼问题是我国民间�
最早出现在《孙子算经》中。北师大版五年级上册教材对于这个问题的解题设计,是把列表法作为主要的解题法,但教参中又提到了画图法、假设法、方程法等,提倡算法的多样化,明显要求老师在教学中,这几种方法都要提到。经过对教材的解读和同科组几位老师商讨,觉得这几种方法归根到底都是假设法,画图法和假设法更是同出一辙,一个是直观的假设,另一个是把直观的假设抽象成数字符号表示而已。考虑到方程法学生不会解,所以决定以教材为重点,先用一个课时上列表法,再用一个课时上画图法和假设法,用两个课时上完。如果过中有学生用到方程解的,也给予肯定。
上课之前,我们都觉得学生对于画图法和假设法应该较为容易理解,通过教学后发现,学生对于列表法,特别是对逐一列表法,学生们普遍都能理解掌握,对于跳跃式列表法、取中列表法也有大部份的学生能够灵活运用。反而是假设法,虽然有画图法辅助理解,相差的腿数,为什么要除以鸡兔的腿数差,学生还是难以理解。授完课之后,我们还发现了另外两个更为严重的问题:一是学生在学了假设法后,觉得假设法比列表法的书写来的简便,更喜欢用假设法,而他们又没能理解透彻这种方法,常常用相差的腿数除以鸡腿数或兔腿数,导致解题错误。二是学生虽然懂得用列表法解决真正的鸡兔同笼问题,一但换成另一个内容的类似鸡兔同笼的问题时,学生却不懂填表头。
如:(1)新星小学“环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各有几个?(2)小白兔拔萝卜,雨天一天拔12个,晴天一天拔20个,小白兔共拔了112个萝卜,平均每天拔14个,小白兔拔萝卜有几天是雨天几天是晴天?
出现这些问题,我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把列表法与表头的填写方法作为重点来上,其他的方法根据学生的认知水平适当处理。
“鸡兔同笼”新教材已编入新课程教材第八册中。
先说说我这节课的教学流程:
1、导入部分:先出示图片,通过谈话了解鸡兔同笼的基本特点,然后给学生类似于几只青蛙几条腿的诗歌形式让学生朗朗上口,紧接着问,鸡兔共5只,腿有多少条?这个地方老师没有留思考时间,也是老师的目的所在,能让学生马上意识到这个题目的解具有多样性,同时给后面的逐一列表法做好铺垫。接着老师告诉学生笼子里有2只鸡,3只兔,腿有多少条?学生能马上顺理成章说出得数,并总结求腿的条数的方法。老师接着把问题反过来,就形成了鸡兔同笼的模型,同时交代鸡兔同笼的历史背景。
2、整个课堂始终以一个例题贯穿,解决例题主要讲解了三种类型列表法和假设法列算式,我比较注重三种列表法的利弊,优化过程,以及衔接语的使用。列表格讲解完之后给了一个选择合适的列表法练习,有的学生能够两部到位,其实他在使用跳跃法的过程中已经使用了我们假设法中的第三步。学生已经知道有目的性进行跳跃了。
3、在讲解假设法的时候时间比较仓促,我通过多媒体课件帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化。
4。部分老师认为鸡兔同笼用方程法简便,但是现在新教材把它挪到四年级下册,也就是编者特意放在方程之前,
在实际的操作中,也发现了许多问题:
1、我感觉在教学设计上时间的安排可能不够合理,(不知道是不够合理还是本身内容多。)导致练习部分仓促,更没有多余的时间让鸡兔同笼问题走向生活。作为鸡兔同笼问题本身是毫无价值的,生活中也不可能鸡兔同笼,但是它的数学思想还是具有可借鉴性的所以这部分只能在练习课上补充。
2、新课标指出学习数学必须自我探索,合作交流,动手实践,让学生作为学习的主人。但整个课堂我拽得比较紧,可能没有给学生合作交流的机会。说实话,我也不敢让学生合作交流,一方面怕学生不会交流而冷场,另一方面怕交流没有成效。
鸡兔同笼问题最早出现在我国古代的一本数学著作《孙子算经》中,虽历经1500多年,该类问题还是向我们展现出了其巨大的魅力。二、三年级的奥数中有,五、六年级的教材中有,到了初中还要学,那么该类问题中究竟蕴含着怎样的数学思想,我们在教学中应该怎样构建该类问题模型,教给学生解决该类问题的方法,使学生的数学思维得到相应的发展呢?
带着这样的思考,我不断地查阅资料,寻找我课堂教学的立足点。很幸运的是在查阅资料的过程中我有机会读到了《“鸡兔同笼”问题中的数学思想方法及其渗透策略》这篇文章,其中有这样一段话给了我很大的启发。这段话给我这节课的教学设计起到了很好的理论支撑的作用。这段话中提到“当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。”“如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次渗透、学生领悟较深的思想方法,惟有假设和抬脚才是本节课中新出现的思想方法,而抬脚不过是特殊的假设,且具有很强的局限性。由此看来,学生真正最需要获得的,又能适应解决问题普遍性要求的一种新的数学思想方法就是假设。”
一、在进行了充分的思考与备课之后,我如期的上了这节课,通过对这节课的实际教学,检查了学生这节课的学习效果之后,我对本节课有了以下几点反思:
1、体现了解决问题策略的多样化与优化
鸡兔同笼问题作为六年级数学广角的内容,那它的思维含量必然很高,由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:列表法、假设法、列方程、画图法、抬脚法即古人的砍足法,在进行练习时,我先让学生选择自己喜欢的方法进行接的解答,指名生汇报后,进一步问:“还可以怎样解?”促进学生去思考更多的解法,并尽可能多的让学生说出解法,最后比较哪种算法比较好。从列表的枚举法到假设的算术法,不仅从思维上层层递进,而且更好地体现了解决问题策略的多样化与优化。
2、注重了数学思想、数学文化的。传承
“鸡兔同笼”是我国民间� 通过学习,不仅使学生感受了祖先的聪明才智,渗透一种古代数学文化,更重要的是体会了其中蕴含的丰富数学思想方法,培养了学生的学习兴趣和能力。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。
3、形成了假设的数学思想
课前,我就感受到了这节课容量大,学生难理解,如果一节课中要求学生理解所有的思想内涵,必将导致课堂内容学习的拥堵和孩子们学习的不知所措。教学中,我并没有平均分配学习时间和关注度,而是结合孩子们认知方式的,选取了算术解决的假设模型为本课数学思想的重点去渗透,让孩子们在学习解决问题的过程中,在不知不觉的对比中,体会数学思想。正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。
4、构建了该类问题的数学模型
在学生重点掌握了两种解题思路后,我话锋一转,告诉同学们“鸡兔同笼”问题并不单指“鸡兔同笼”,该类问题在我们的生活中经常遇到,如龟鹤问题、民谣中的人狗问题、租大船小船问题等。明确其在生活中的应用,体现数学的生活味和应用价值。让学生感受到“鸡兔同笼”问题的学习,贵在学习一种假设推理与代数方程的思想方法,贵在用来解决生活中类似于鸡兔同笼的变式问题。拓宽了对“鸡兔同笼”问题的认识,构建了该类问题的数学模型,形成了知识的迁移。
二、还需改进的地方
1、问题情景的创设
生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。尤其是在课始时创设学生喜闻乐见的教学情境,能使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。基于这一点,我觉得本节课在课始时如果能创设学生喜闻乐见的教学情境,然后再引入:“类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了。”再课件出示《孙子算经》及鸡兔同笼问题,学生的探究欲望马上就调动起来了,再展开教学,相信会取得更好的效果。
2、进一步加强交流互动,在合作中提高学习效率
根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课,在探究解决“鸡兔同笼”问题的方法时,让学生投入到解决问题的实践活动中去,自己去研究、探索、取得了较好的效果,但后面得教学中,没能充分发挥生生互动的作用,如在练习完成后,仅仅是指名汇报一下,如果能让学生同桌再互相说说,小组交流一下会更好。另外,在用假设法解决问题后,应该渗透检验的思想。
《鸡兔同笼》 向学生提供了现实、有趣、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用列举法、假设法、方程等方法,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法 。
鸡兔同笼问题是一类重要数学问题,在现代生活中随处可见。
(1) 三轮车和自行车共 7 辆 ,17 个轮子。三轮车、自行车各有几辆?
(2) 小方有 2 分、 5 分硬币共 10 枚,共有 32 分。 2 分、 5 分硬币各有几枚?
回过头来我们在来看一看《孙子算经》里的这道题:今有鸡兔同笼,上有三十五头,下有九十四足。问鸡、兔各几何?你能拭着做一做吗?
对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本节课属于综合应用课,其目的是加强数学知识与现实生活中问题的结合,以提高学生综合应用的能力。借助“鸡兔同笼”这个载体,初步获得一些数学活动的经验,在活动中引导学生自主探索,积极思考,从中体会出解决问题的一般策略。
在本节课的教学中,我感觉:
1、课堂上,多数学生的积极性还是比较高的。先让学生独立思考或小组讨论,再在全班共同交流评价。学生在民主、和谐的氛围中开拓了思维,达到了运用多种方法解决问题的目的。体现了学生是学习的主人。但部分学生会做却不会表达、不敢表达。口语表达能力欠佳。
2、课堂上,通过学习,使学生知道了假设的数学思想不仅可以解答古代趣题——鸡兔同笼问题,还能解答我们身边的问题。体会到数学就在我们身边。
3 、课堂上,注重关注每一个同学的发展,在交流探讨中,鼓励不同学生采用不同的解题方法。效果还不错。
通过研读教材和教学用书,我知道鸡兔同笼问题最早出现在我国古代的一本数学著作《孙子算经》中,虽历经1500多年,该类问题还是向我们展现出了其巨大的魅力。二、三年级的奥数中有,五、六年级的教材中有,到了初中还要学,那么该类问题中究竟蕴含着怎样的数学思想,我们在教学中应该怎样构建该类问题模型,教给学生解决该类问题的方法,使学生的数学思维得到相应的发展呢?带着这样的思考,我不断地查阅资料,寻找我课堂教学的立足点。很幸运的是在查阅资料的过程中我有机会读到了《“鸡兔同笼”问题中的数学思想方法及其渗透策略》这篇文章,其中有这样一段话给了我很大的启发。
这段话给我这节课的教学设计起到了很好的理论支撑的作用。这段话中提到“当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。”
“如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次渗透、学生领悟较深的思想方法,惟有假设和抬脚才是本节课中新出现的思想方法,而抬脚不过是特殊的假设,且具有很强的局限性。由此看来,学生真正最需要获得的,又能适应解决问题普遍性要求的一种新的数学思想方法就是假设。”在进行了充分的思考与备课之后,我如期的上了这节课,通过对这节课的实际教学,检查了学生这节课的学习效果之后,我对本节课有了以下几点反思:
1、体现了解决问题策略的多样化与优化
鸡兔同笼问题作为六年级数学广角的内容,那它的思维含量必然很高,由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:列表法、假设法、列方程、画图法、抬脚法即古人的砍足法,在进行练习时,我先让学生选择自己喜欢的方法进行接的解答,指名生汇报后,进一步问:“还可以怎样解?”促进学生去思考更多的解法,并尽可能多的让学生说出解法,最后比较哪种算法比较好。从列表的枚举法到假设的算术法,不仅从思维上层层递进,而且更好地体现了解决问题策略的多样化与优化。
2、注重了数学思想、数学文化的传承
“鸡兔同笼”是我国民间� 通过学习,不仅使学生感受了祖先的聪明才智,渗透一种古代数学文化,更重要的是体会了其中蕴含的丰富数学思想方法,培养了学生的学习兴趣和能力。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。
3、形成了假设的数学思想
课前,我就感受到了这节课容量大,学生难理解,如果一节课中要求学生理解所有的思想内涵,必将导致课堂内容学习的拥堵和孩子们学习的不知所措。教学中,我并没有平均分配学习时间和关注度,而是结合孩子们认知方式的,选取了算术解决的假设模型为本课数学思想的重点去渗透,让孩子们在学习解决问题的过程中,在不知不觉的对比中,体会数学思想。正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。
4、构建了该类问题的数学模型
在学生重点掌握了两种解题思路后,我话锋一转,告诉同学们“鸡兔同笼”问题并不单指“鸡兔同笼”,该类问题在我们的生活中经常遇到,如龟鹤问题、民谣中的人狗问题、租大船小船问题等。明确其在生活中的应用,体现数学的生活味和应用价值。让学生感受到“鸡兔同笼”问题的学习,贵在学习一种假设推理与代数方程的思想方法,贵在用来解决生活中类似于鸡兔同笼的变式问题。拓宽了对“鸡兔同笼”问题的认识,构建了该类问题的数学模型,形成了知识的迁移。
各位老师:
大家好!
我说课的内容是六年级上册数学广角《鸡兔同笼》问题。
一、教材、学情分析
首先我进行一下教材分析和学情分析。
教材分析:
“鸡兔同笼”问题是我国民间� 教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。教材的编排有以下特点:1、教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并通过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。2、注重体现解决“鸡兔同笼”问题的不同思路和方法。3、让学生进一步体会到这类问题在日常生活中的应用。
学情分析:
认知分析:对于六年级的学生他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。
能力分析:学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面需进一步培养。
情感分析:我班共33人,多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,需通过营造一定的学习氛围,来加以带动。
基于对教材的理解和分析,结合学生的知识经验和生活经验,遵循课程标准精神,我确定了以下三维目标与重点难点。
二、目标分析:
知识与技能目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。
过程与方法目标:
在解决问题的过程中培养学生的逻辑推理能力。
情感态度与价值观目标:
1、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
2、让学生体会到数学问题在日常生活中的应用,进而让学生体会数学的价值。
教学重点难点:
教学重点:以鸡兔同笼问题为载体,培养学生多角度思考数学问题的思维方式。
教学难点 :理解数学知识与实际生活问题的联系,掌握利用数学方法解决实际问题的策略。
三.教法和教学手段分析
针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。根据优中差生采取分层教学。课堂上教师要成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。
为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。
四、学法指导
由实例引入,在借助学习例1同时,向学生渗透化繁为简的思想,使学生通过猜测、列表、假设或方程等方法来解决问题,在师生互动中让每个学生都动口、动手、动脑。并专门为学困生创设他们展示的空间和时间。培养每个学生学习的主动性和积极性。
五、教具学具准备:
多媒体课件及每小组一份按顺序填写的表格图。
六、教学流程:
本课我共设计了情境导入、探索新知、巩固新知、课堂小结、家庭作业五个环节。下面我就具体说一说每个环节。
(一)情境导入。
首先用课件出示第112页的情境图,我引导:“看,图上的个个学生紧锁眉头,还有一个学生急得头上都流汗了,他们正在为一个什么问题冥思苦想呢?我们能不能帮帮他们?”这时学生就会发现,情境图旁边的原题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(目的是引导学生发现问题并激发学生解决问题的欲望)
接下来我让学生说说题的意思,再课件出示这道题的今意:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?(目的是确保学生正确理解题意,保持对该问题的好奇心。)
这就是我们今天要研究的问题“鸡兔同笼”问题。这样就揭示了课题并(板书课题)这样就很自然地进入了第二个环节。
(二)探索新知
探索新知是本节课教学的'重点环节,也是理解的难点,教学 这样就变成了例1。
(课件出示例1)笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?先引导学生理解分析题意:请同学们默默地读这道题,思考一下:从上面数,有8个头是什么意思?(指谁的头?)从下面数,有26只脚是什么意思?问题是什么?这里还隐藏了什么条件?(目的是引导学生说出鸡两只脚,兔四只脚。)
鸡和兔各有几只呢?我们不妨猜想看看。(我随着学生的猜想板书)
接下来介绍列表法:
刚才我们是随意猜的,其实我们还可以有顺序的猜。
我课件出示113页的表格,并指出:老师给每个小组也发了一张同样的表格,我让学生先进行分工,再共同完成表格,并指名学生汇报。
我总结:这其实就是按顺序列表的方法。这样我们也就用列表法解决了这个问题。请同学们仔细观察比较表格,从表格中你能发现什么?把你的发现和同桌同学说一说。(学生同桌交流)再指名汇报。
学生的发现我预设了4种情况:
1、鸡在减少,兔在增加,脚也在增加。
2、每减少一只鸡,增加一只兔,脚的总只数增加两只。
3、每减少一只兔,增加一只鸡,脚的总只数减少两只。
4、鸡和兔的总只数没有变。
为了引出算的方法,我作了如下导语:如果头数太多,还用猜的方法和列表的方法是不是太麻烦了,那该怎么办呢?能不能用算的方法呢?小组讨论,还有什么方法?
学生在讨论期间,我在组间巡视并加以适当引导。如果有的学生茫然无绪,我启发学生:“假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?”从而引导学生解决问题。(这样以小组为单位,每个学生都经历知识的形成过程,老师也加入了孩子们探讨的过程。并对学习有困难的学生加以点拨。)
先让用算术方法计算的学生汇报。我要求学生清楚的表达思考过程和解决方法。先让小组长说,再让中等生说。根据我班的实际情况,我预设到会有几个学困生还是弄不明白。所以我采用画图的方法特定帮助这部分学生理解。
(我边作图边讲解)
我先画出8个小圆圈就代表8只小动物,假设全是鸡,每只鸡有两只脚,这样就先画16只脚,指一名学困生列出算式:8×2=16(只)而题目中说共有26只脚,还少多少只脚,再指一名学困生列出算式:26-16=10(只)这说明有一些兔子被算成了鸡,而每只兔子算成了鸡就少了两只脚,列出算式:4-2=2(只),10里面有几个2,列式:10÷2=5,于是我们就给其中的五只鸡都添上两只脚变成兔,这样就有26只脚了。5只鸡变成了5只兔,这里的5就是兔的只数。这里我预设到学生解答时很有可能把鸡和兔的只数答反了,所以我着重强调这里的5是兔的只数。
假设8只小动物都是兔,怎么办呢?(我要求学生合作完成)
(我的设计意图是对于学困生需要老师适时地站出来引领学生进行探索,通过一些有效的数学模型,来帮助学生建立一个解决问题的台阶,使他们掌握方法,体验成功。为了保护学生的自尊心,他们感觉不出自己是学困生,因为课堂上也有他们的精彩表现,只是和优等生的难度不同,他们只是老师心目中的学困生,而不是学生眼中的学困生。)
我指出:这两种方法都是假设的,一种假设的全是鸡,一种假设的全是兔。像这样的方法,我们可以称它“假设法”。
接下来我让用方程做的同学说出思考过程和解题方法。再让学生(三)说算理。
(设计意图是因为学生在五年级时已经对于列方程解决问题有一定的基础,根据本班学生情况和已有的知识经验,这个方法数量关系明确学生容易理解。所以我就让学生自己去尝试。)
(三)小结
用多种方法解答“鸡兔同笼”问题。
我引导学生比较这些不同的方法,你比较喜欢哪种方法?能说说你的理由吗?
(我的设计意图是通过学生比较不同的方法,让学生对策略作出选择,在交流中,让学生感受到不同方法的思维特点,感受到方程法的一般性。)(同时这个环节的设计目的是让每个学生建构自己的知识体系)
(四)学以致用
用自己喜欢的方法解决《孙子算经》中鸡兔同笼的原题。(目的是一方面 《孙子算经》中的鸡兔同笼问题,另一方面让学生在解决该问题的过程中进一步巩固前面所学的解题方法。)
出示公园划船的图片和题: “做一做”中的第2题。
学生用自己喜欢的方法列式解答。并汇报思考过程。
(设计意图是学生在解决实际问题的过程中对假设法和方程法有了初步体验,更有利于学生今后独立运用策略解决实际问题的能力。
(五)作业
必做题
练习二十六:1、2、3、5题
选做题
课外阅读:阅读课本114页内容,了解古人是怎样解决“鸡兔同笼”问题的。
古代趣题
一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁?
(设计此题的目的是一方面让学生利用本节课所学知识解决生活中的数学问题,另一方面 对学生进行品德教育。)
六、板书设计分析:除课题外,其他板书都是随学生的汇报而写的。(设计目的是让学生体验自己的回答和尝试竟能成为老师板书的内容,激发学生勇于发言的信心。)
鸡兔同笼教学反思
数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题就是这样一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。以下是我上完课的几点体会:
一、大敢转换情境,提高情境“知名度”。
生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。课堂教学中教师要创设学生喜闻乐见的教学情境,使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。还要注重对学生进行引导,让学生通过观察、操作、讨论、思考发现并掌握知识,时刻把学生推到学习的主体地位,在一个恰当的主题中学习数学,发展能力。基于这一点,本节课的内容安排在“数学与生活” 当中,用在生活中经常遇到的一些问题,来引入(幻灯出示:)
1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?
2、12张乒乓球台上同时有34人正进行乒乓球比赛,正在进行单打和双打比赛的球台各有几张?
类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了,再课件出示《孙子算经》及鸡兔同笼问题,但同时又聪明地把数改小了:今有鸡兔同笼,上有八头,下有二十二足,问鸡兔各几何?一石激起千层浪,鸡兔怎能同笼?学生的探究欲望马上调动起来,这时,又让学生了解“经典”,感受 “经典”。
二、鼓励参与,在合作中提高学习效率。
根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,我主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,兵教兵,通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。大部分学生学会了,这是很让我感到激动的,因为毕竟鸡兔同笼问题比较难。
三、关注每一个学生的发展,提高课堂教学的生成性。
由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同一问题中,学生的认知水平也有不同。在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:逐一列表法、取中列表法、假设法、列方程、画图法及古人的砍足法,最后比较哪种算法比较好。这样教学既培养了学生探究能力和小组合作能力,又体现了算法多样化与优化,也让不同的学生在同一节课中都有不同程度地提高。
总的来说,本节课从学的角度呈现学习内容,合理安排教学过程,提供操作材料,拨动学生心弦,把学习的主动权交给学生,让学生在合作学习的活动中主动完成知识的建构过程。因此,在整堂课中,学生学得兴趣盎然,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
但教学中也存在着很多问题,反思如下:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;
2、学生汇报时,要多培养学生质疑能力,听不明白的及时向小老师提问,及时解决不懂的问题。
3、要注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。
透过课前对学生的调查,我发现有一部分学生接触过“鸡兔同笼”问题,但多数学生对独立学习“鸡兔同笼”问题存在必须的难度。在采用“先学后教,当堂训练”的课堂教学模式时,我为学生设计了导学案,让学生在尝试,探索,交流合作中体会“鸡兔同笼”问题的基本结构特征,经历用不同的方法解决“鸡兔同笼”问题的过程,初步构成解决此类问题的一般性策略。
一、学案导学,自主探索
“鸡兔同笼”向学生带给了现实、搞笑、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,让学生在课前自学,我为学生设计了导学案,辅助学生应用画图法、列表法、假设法、代数法等,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策� 学案导学,自主探索,让学生在自学后能真正把所学的数学知识技术应用到生活中实际问题中去,用数学的眼光看待身边的事物,感受数学的价值。
二、合作交流,主动建构
在解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,有猜测、列表、假设和方程解。其中假设和列方程解是解决该类问题的一般方法。在设计时,我思考到一部分后进生的实际,安排了画图法作为学生理解假设法的基础。让学生在课前自己尝试着画一画,课中在教师的引导下分析画图法的思路,进而帮忙同学们理解假设法中的难点,让学生能清楚的表达用假设法解决鸡兔同笼问题的思考过程。在分析列表法的过程中,有意让学去观察列表法中的哪几种状况是不可能出现的,进而将列表法与假设法相关联起来。可能有一部分学生会选取用列方程的方法来解决该类问题,因为用方程解这类问题的相等关系是十分简单和清晰的,在设鸡或兔的其中一个只数为X,则另一个只数能够用含X的式子来表示,这个过程实际上也运用了假设法。然后根据鸡、兔的只数与脚的总数的关系列出方程。在方程列好后,能对解答过程进行比较,让学生明白设脚数多的这个量为X,能使解答过程变的简便。
在实际课堂教学过程中,学生隐约感觉到了这些方法间的联系——假设法,只是学生不敢说出来,在老师的引导下,他们才说出了这些方法间的联系,比较难得的是学生基本能说出各种方法的优缺,懂得用自己真正理解的方法去解答。
三、当堂训练,拓展延伸
在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。学生只要懂了,在后面的问题中,他自然而然会用到假设和方程的方法。在当堂训练中我安排了3个层次的资料。第一个层次有数量关系分析辅助,第二个层“鸡兔同笼”问题的基本型,第三个层次是选做题。让学生解决不同难度层次的问题能够检验学生对“鸡兔同笼”问题解决方法的掌握程度。这样的设计能够使潜能生不至于由于问题太难而束手无策,也不会使优等生因为问题太易而简单地套用方法。
在实际操作过程中,这也是本课时最大的遗憾,不是练习的设计有问题,而是课堂教学资料太多,以致教学时间不足,使得练习的时间没能得到保证。
本节课的成功之处:
一、注重解题策略的多样
教学中,我引导学生从多角度思考问题,运用了画图、列表、假设、代数等多种方法解决问题,促进学生数学思维潜力的发展。
二、注重数学思想的渗透
我在引导学生运用多种方法解决问题所采用的策略中,有意识的渗透了数学思想。如:将“鸡兔同笼”的原题数据改小中渗透了化繁为简思想,“列表”的策略中便渗透了变化和函数思想,“算术法”的策略中渗透了假设思想,“方程”的策略中渗透了代数思想等等。
三、注重学生思维的培养
在导学案中,我让学生依次经历画图、列表、假设、方程这四种解决问题的方法,并注重了这些方法之间的联系和层次,有意识的对学生进行了思维培养。
四、注重数学文化的培养
教学中,我把《孙子算经》的原题和特殊解法搬到课堂中来,尤其是后面把腿的只数减少一半后,这都是一种数学文化在现代课堂当中的一种深刻地体现!更使他们感到学数学不是枯燥乏味的,而是风趣幽默、有情搞笑的一门学科。
在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法,充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。师生共同经历了三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?
虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。
就本堂课而言,还存在以下问题;
1 、在创设完情景引导学生用什么方法解这个问题时,学生的一些回答,没有预想到。如有学生认为可以通过数鸡和兔的头或一只只放出来数从而知道鸡兔各有几只。说明在情景创设上有漏洞,需进一步完善。
2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。
3 、没有出示一个完整的表格,在引导学生用简便方法调整假设时的讲解上不直观,只有部分优生能理解。
4 、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。
本节课通过创设生动的问题情境,让学生投入到解决问题的实践活动中去,自己探究,经历数学学习的全过程,从而体会假设的数学思想的应用与解决问题的关系。在学习中我注重鼓励每一个学生参与学习过程,用适合他们的方法解决问题,同时也体验解决问题的不同方法。
“鸡兔同笼”以前是属于奥数类型的题目,如今编入教材,对学生尤其是基础不好的`学生来说有一定的难度,特别是使用假设法解答时,学生理解起来很难,为此我先采用列表法来帮助学生理解,把抽象的知识直观化,然后再引入假设法。对于理解能力较差的学生来说,列表法数据较大,假设法又不易理解,所以我也将抬脚法引入课堂,希望能够为学生提供解决问题的多种思路。
对于本节课的学习,部分学生已经在课外辅导班学习过了,课堂上这些学生的积极性很高,也能够深刻理解鸡兔同笼的意义,但这就造成了个别程度较差的学生偷懒现象,所以在接下来的练习课上要更多的关注那些做题速度较慢、思维不清晰的学生。
对于我班多数的学生来说,学习《鸡兔同笼》可能会有必须的难度。所以在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。
例:鸡兔同笼,有20只头,54条腿,鸡、兔各有多少只?
师生共同经历了三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?
引导学生画图的方法去试:先画20个圆圈表示20个头,再在每个动物下面画两条腿,20只动物只用了40条腿,还多出14条腿,把剩下的14条腿要给其中的几只动物添上呢?(7只动物分别添2条腿)。这7只就是兔子,另外的13只就是鸡。这时候有学生问能把动物都看成是4条腿的吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。
虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的用心性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。
《鸡兔同笼》 向学生提供了现实、有趣、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用列举法、假设法、方程等方法,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的'方法 。
鸡兔同笼问题是一类重要数学问题,在现代生活中随处可见。
(1) 三轮车和自行车共 7 辆 ,17 个轮子。三轮车、自行车各有几辆?
(2) 小方有 2 分、 5 分硬币共 10 枚,共有 32 分。 2 分、 5 分硬币各有几枚?
回过头来我们在来看一看《孙子算经》里的这道题:今有鸡兔同笼,上有三十五头,下有九十四足。问鸡、兔各几何?你能拭着做一做吗?
对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本节课属于综合应用课,其目的是加强数学知识与现实生活中问题的结合,以提高学生综合应用的能力。借助“鸡兔同笼”这个载体,初步获得一些数学活动的经验,在活动中引导学生自主探索,积极思考,从中体会出解决问题的一般策略。
在本节课的教学中,我感觉:
1。 课堂上,多数学生的积极性还是比较高的。先让学生独立思考或小组讨论,再在全班共同交流评价。学生在民主、和谐的氛围中开拓了思维,达到了运用多种方法解决问题的目的。体现了学生是学习的主人。但部分学生会做却不会表达、不敢表达。口语表达能力欠佳。
2。 课堂上,通过学习,使学生知道了假设的数学思想不仅可以解答古代趣题 ―― 鸡兔同笼问题,还能解答我们身边的问题。体会到数学就在我们身边。
3 、课堂上,注重关注每一个同学的发展,在交流探讨中,鼓励不同学生采用不同的解题方法。效果还不错。
课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路,这也是我校推广的三环六部教学法。
师生共同经历了三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?引导学生画图的方法去试:先画20个圆圈表示20个头,再在每个动物下面画两条腿,20只动物只用了40条腿,还多出14条腿,把剩下的14条腿要给其中的几只动物添上呢?(7只动物分别添2条腿)。这7只就是兔子,另外的13只就是鸡。这时候有学生问能把动物都看成是4条腿的吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。
虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的。过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。
就本堂课而言,还存在以下问题;
1、由于注重模式,合作交流,教师点拨这一块不够透彻,没有关注到差生。
2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。
3 、没有出示一个完整的表格,在引导学生用简便方法调整假设时的讲解上不直观,只有部分优生能理解。
《鸡兔同笼》一课是《鸡兔同笼》一课是人教版版小学数学四年级下册一课的内容,本节课思维含量大,对学生来说难学。解决这道数学古题、趣题的方法有好多种,但教材只向学生介绍了“列表法”这一种方法。现对本节的教学做以下反思:
一、课前思考
1、紧贴教材,使用教材。
“鸡兔同笼”问题的解决方法有好多种,但是教材只向学生介绍了“列表法”这一种。因为“列表法”是解决问题最常用、最一般的方法,针对的是百分之九十的学生能完全掌握,做到了几乎面向全体,关注差异。而表格中的数据又能让学生更直观的进行探索规律,规律的掌握又能促进学生更好地利用列表快速解决问题。同时“列表法”这一解决问题的策略从数学层面上讲具有广泛性,我想这也正是教材采用它的真正目的,做到了“授之以渔”。因此,在本节课的教学中我紧扣“列表法”进行教学,让学生熟练掌握“列表法”这一方法。
2、尊重学生,找准起点。
“鸡兔同笼”问题对于小学生来说“难”,要突破难点,就要把握学生的认知起点。孩子们的困难在于如何应用“列表法”进行逐一举例,以及通过表格发现“鸡兔同笼”问题中所蕴含的规律,而非合作探究出“跳跃举例”和“取中举例”这两种列举方法。因此,在教学中我将教学重点设置为引导学生经历逐一举例和规律探索,有了这一铺垫,学习的难点就迎刃而解。
3、方法教学,注重引导。
数学教学就是方法教学,在本节课中我想交给学生的方法有:解决问题尝试猜测;遇到难题化繁为简;观察数据,先分后总;探寻规律,注重合作。学习方法的渗透对学生来说价值更大。
4、关注学生,积极参与。
教师是学生学习的引导者、组织者和合作者,学生在学习的过程中,我要及时参与到他们中来,帮他们解疑释惑。促进学生更加高效的学习。
二、课后思考
(一)从课标角度去看
1、《课标》理念
使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2、体现四基
一节好的数学课应该体现四基:不但要让学生掌握数学基础知识,训练数学基本技能,还要领悟数学基本思想,积累数学基本活动经验。
3、培养核心素养
除此之外,我还注重数据分析观念、运算能力、推理能力、应用意识和创新意识这些核心素养的培养,力求学生全面发展。
(二)从教材的角度去看
1、紧贴教材编写意图
在有限的四十分钟内让学生学会解决“鸡兔同笼”问题,“列表法”是众多方法的基础,因此本课教学针对“列表法”展开教学与探索。
2、学会使用教材
作为一个教师,要合理地使用教材教而不是教教材,因此我们要深挖教材,把表象的东西形象化,在本课中借助“鸡兔同笼”化简题向学生渗透“化繁为简”的数学思想,借助表格让学生探寻“鸡兔同笼”问题中所蕴含的规律,找到精髓,提供给学生解决“鸡兔同笼”类型题的方法,学会举一反三。
3、创新教材
表格对于学生来说并不陌生,但学会列表,表格中的项目怎么填对学生来说较难,因此对于列表法的形成我采用了动态化的活动,先让学生猜有9个头,鸡和兔会有那些可能,这样很自然形成了表哥的前两项,再出示有26条腿,那么刚才的猜想都对吗?为什么?学生这时就会想到还要看每次猜想的鸡和兔的腿数是否是26条才行。这样就形成了第三列,让表格形象生动起来,同时也降低了学生学习的难度。在课尾,向学生介绍古人用的方法以及其他解决的方法,不但让学生体会到古人超长的智慧,还拓展了他们的知识面。
(三)教师的角度
1、引导者
始终做一个引导者,把学生引到探究的路上,在恰当的时机进行点拨,帮他们解疑释惑。
2、组织者
当学生学到本节的重点时,我就及时组织活动,让他们通过操作活动来探寻知识,掌握方法。
3、参与者
在学生的合作学习中,做一个参与者,和他们一起思考,找准学生的疑惑之处进行点拨指导。让学生的合作学习更有效。
(四)学生的角度
1、找准起点
学生的学习基础决定这学生的起点。孩子们学这节课有困难,虽然“取中列举”和“跳跃列举”对学生来说是难点,但规律的探寻对学生来说更为重要。只有掌握了规律学生才能情不自禁的使用“跳跃列举”和“取中列举”,这样难点对学生来说就不是难点而是意外的收获,更让他们惊喜。
2、学习方法
学生在整个学习中始终是学习的主人,动手实践、自主探索与合作交流也是他们本节课学习数学的重要方式,也是学生喜闻乐见的方式,这样的学习效果更佳!
3、学会知识与方法
孩子们在本节课中不但学会了用列表法解决鸡兔同笼问题,同时还收获了解决问题的策略尝试与猜想;解决难题的方法化繁为简;观察的顺序由上而下或由下而上,先分后总的有序有效观察。
三、不足
1、本节课由于要让学生充分的`探索与体验因此在时间上有所拖延。但是对于学生掌握知识来说,只有充分体验了才不会忘记。我想多给学生一些等待,静待花开的声音!
2、本节课的氛围不够浓厚。
本节课的思维含量比较大,学生随着学习内容会不断地去思考,理性大于感性,因此本节课不是热热闹闹的课堂。
我想,“鸡兔同笼”问题不只是知识的传授,它更想传播一种思维的方式和思考的方法。
人教版四年级鸡兔同笼教学反思
《鸡兔同笼》问题教学有必须的难度,课前我对我班的学生进行了了解。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有必须的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。
本节课,在整个课堂中,在问题得到解决的同时学生也体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还就应在从主次的角度更好地进行设计。
对于本节课我个
学生在解题过程中,初步感知了生活中的鸡兔同笼趣题,明白了鸡、兔的头数与鸡、兔脚的只数之间的复杂关系。好的开端是成功的一半,抓住知识上的联系激发了学生的学习热情。然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并用教具和多媒体课件的展示,帮忙学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于“鸡兔同笼”问题在小学五年级学稍复杂的方程时出现过,也有小部分学生可能在数奥书上见过,会做。
大部分学生不是很会做,因此在备课时我充分思考到这个状况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导对学生进行分析,加以教具演示,帮忙学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再用课件展示分析过程。透过这两步的学习,大部分学生就应基本能利用假设法来解答“鸡兔同笼”问题。
三、在这节课上我没有讲古人用的“抬脚法”的方法。
这主要是依据学生的理解潜力和时间上的思考,本来这节课讲的方法就很多,个性是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
四、我认为本节课的重难点都就应是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡那里,用26-16=10条腿,那里就应说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,透过我的分析,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时能够直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”那里是把兔假设成了鸡,肯定就应是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
不足之处:
本节课在时间的安排上不够合理,导致本节课我并没有完成我预设的资料。本节课重在方法的渗透,学生务必经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,务必实实在在的引导,这样学生务必有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中更多类型的实际问题。
在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法,《鸡兔同笼》教学反思。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。师生共同经历了三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?
虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了,教学反思《《鸡兔同笼》教学反思》。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。
就本堂课而言,还存在以下问题;
1 、在创设完情景引导学生用什么方法解这个问题时,学生的一些回答,没有预想到。如有学生认为可以通过数鸡和兔的头或一只只放出来数从而知道鸡兔各有几只。说明在情景创设上有漏洞,需进一步完善。
2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的'数量去推算出兔的只数,误解了题意。
3 、没有出示一个完整的表格,在引导学生用简便方法调整假设时的讲解上不直观,只有部分优生能理解。
4 、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。
在实际操作过程中,这也是本课时最大的遗憾,不是练习的设计有问题,而是课堂教学内容太多,以致教学时间不足,使得练习的时间没能得到保证。
本节课的成功之处:
一、注重解题策略的多样
教学中,我引导学生从多角度思考问题,运用了画图、列表、假设、代数等多种方法解决问题,促进学生数学思维能力的发展。
二、注重数学思想的渗透
我在引导学生运用多种方法解决问题所采用的策略中,有意识的渗透了数学思想。如:将“鸡兔同笼”的原题数据改小中渗透了化繁为简思想,“列表”的策略中便渗透了变化和函数思想,“算术法”的策略中渗透了假设思想,“方程”的策略中渗透了代数思想等等。
三、注重学生思维的培养
在导学案中,我让学生依次经历画图、列表、假设、方程这四种解决问题的方法,并注重了这些方法之间的联系和层次,有意识的对学生进行了思维培养。
四、注重数学文化的培养
教学中,我把《孙子算经》的原题和特殊解法搬到课堂中来,尤其是后面把腿的只数减少一半后,这都是一种数学文化在现代课堂当中的一种深刻地体现!更使他们感到学数学不是枯燥乏味的,而是风趣幽默、有情有趣的一门学科。
反思五:鸡兔同笼教学反思
这节课上完后,自我感觉不够理想,有些设计不够好,更有一些细节未加重视,还有就是教师的基本功太弱。但在设计上还是有一定优势的,主要体现在以下几点:
一、在课始,我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于“鸡兔同笼”问题在小学五年级时出现过,也有小部分学生可能在数奥书上见过,会做。大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。通过这两步的学习,大部分学生应该基本能利用假设法来解答“鸡兔同笼”问题。在此基础上教学方程法,主要教给学生找等量关系式,列方程从而让大部分学生能用方程法解决”鸡兔同笼”问题。估计教学时间有些问题。根据教学实际情况进行调整。
三、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
四、我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
《鸡兔同笼》为流传的数学趣题,在本册教材中呈现的解决问题的方法,都是透过假设举例与列表的方法,以及列方程方法寻找解决问题的结果。课堂上引导学生用画图的方法去试:先画20个圆圈表示20个头,再在每个动物下面画两条腿,20只动物只用了40条腿,还多出14条腿,把剩下的14条腿要给其中的几只动物添上呢?(7只动物分别添2条腿)。这7只就是兔子,另外的13只就是鸡。这时候有学生问能把动物都看成是4条腿的吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。需要注意的是,教材选“鸡兔同笼”这个题材,主要并不是为了解决“鸡兔同笼”这个问题本身,而是要借助“鸡兔同笼”这个载体让学生经历列表,让学生在大胆的猜测、尝试和不断调整的过程中,体会出解决问题的一般策略。
教学中我补充了其他的解法,让学生用自己喜欢的方法解决问题,进而凸显了本节课的价值。
就本堂课而言,还存在以下问题;
1.由于注重模式,合作交流,教师点拨这一块不够透彻,没有关注到差生。
2、我在假设之后怎样验证结果是否正确分析得较细,但对怎样假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。
3、小组合作学习中教师调控潜力需进一步提高。如时间的把握、学生合作过程的控制、合作学习的效果等;
反思本节课的教学,以便在以后的教学中扬长避短,不断突破,使教学走上一个新台阶。
《鸡兔同笼》问题教学对于四年级的学生来说有一定的难度,课前我对我班的学生进行了调查。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。
本节课,在整个课堂中,在问题得到解决的同时学生也体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
对于本节课我个 然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法等多种解题策略和方法,并用教具和多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于“鸡兔同笼”问题在小学五年级学稍复杂的方程时出现过,也有小部分学生可能在数奥书上见过,会做。而对于四年级的孩子来说,大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导对学生进行分析,加以教具演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再用课件展示分析过程。通过这两步的学习,大部分学生应该基本能利用假设法来解答“鸡兔同笼”问题。
三、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
四、我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我的分析,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
不足之处:
本节课在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。本节课重在方法的渗透,学生必须经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,必须实实在在的引导,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中更多类型的实际问题。
本节课从学的角度安排教学过程、呈现学习内容,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。让学生获得亲自参与探究学习的积极体验。
按照我对教材的理解,并遵照《新课程标准》中:
在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神。
首先以猜一猜的游戏谜语导入,让学生猜出鸡和兔,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;
然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法的解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点;
接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的解题方法。
最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。
“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,不断调整解题策略,逐步探讨出不同的`方法,找到合理解决问题的策略;并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。
特别是用假设法解答,学生理解起来很难,为此我用画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。
我注重从以下几个方面进行数学文化的渗透:
一、介绍中国古代的数学成就。
中国有着历史悠久、成就辉煌的数学文化,出现了许多伟大的数学家和经典的数学名著。结合本节课的教学内容,教师通过向学生介绍记载“鸡兔同笼”问题的数学名著《孙子算经》,介绍古人解决鸡兔同笼问题的巧妙方法,使学生了解数学知识丰富的历史渊源,感受古人的聪明智慧,增强民族的自豪感。
二、渗透解决问题的思想方法。
数学思想方法是数学文化的精髓,教师有意识地向学生渗透一些基本的数学思想方法,可以加深学生对数学知识的理解,提高学生的思维品质。结合本节课的数学内容,教师适当渗透了化繁为简、猜测验证、假设、数形结合等思想方法,其目的不仅是让学生掌握好本节课的基础知识和基本技能,更重要的让学生了解一些解决问题的策略,提高解决问题的能力。
三、注重数学模型的实际应用。
在数学教学中,从学生已有的生活经验出发,让学生亲身经历讲实际问题抽象成数学模型并进行解释与应用的过程,能激发学生的兴趣,让他们全身心地投入学习。结合本节课的教学内容,教师安排了大量与“鸡兔同笼”有着类似数量关系的问题,让学生会用数学的思维方式去观察、分析周围世界,并且在这现实的、有意义的,富有挑战性的探索活动中,加深对数学知识的理解与掌握,感受到数学的真谛与价值。
但在平时的教学中也存在值得我们进一步思考的问题:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;
2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;
3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
在我校本学期组织的公开课教学中,我讲的是人教版的数学《鸡兔同笼》这课。由于我所教的班级学生整体基础较差,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。
师生共同经历了三种不同的方法,列表法,假设法和代数法。让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。从学生的学习效果来看,在本节的教学中,学生不容易理解或者说容易出错的就是第三步,实际上也就是对“差”的分析,因此,我和课件结合起来,让学生理解:假设全是鸡,就多出了10只脚,而每增加一只兔子,减少1只鸡,多出的只数就会减少2,10里面有5个2,所以应该有5只兔子,这里一定注意要和学生讲清楚2是什么,要学生不仅仅是看算式,更要看算式前面的文字。结合前面的文字来帮助学生理解算式中的10是什么,2是怎么来的,表示什么意思,这样学生才会对假设法有一个准确的认识。
反思整节课,我感觉基本实现了我预定的教学目标。但是还是存在着很多的不足,例如:
首先,我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型,大多数同学还是比较喜欢用代数法来解决。
然后,就是在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。在进行教学设计时,我也感觉到本节课的内容着实又点多,虽然问题没几个,但本节课重在方法的渗透,学生必须经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,必须实实在在的开展探讨活动,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的`策略;这样一节课的时间就显得不够用了,导致最后没有时间来了解日本的龟鹤问题和解决生活中的实际问题。
对于这个问题我也认真的思考了一下解决的办法,因为这是一节公开课,所以要给所有听课教师呈现一节完整的课,那么就要有联系生活实际的练习或者说必须做几道练习题,那么在前面为了节省时间就可以说说解题的思路或者让学生说说列式就可以了,这样就可以解决龟鹤问题,也可以出示生活中的问题让学生用本节课学习的方法解决,这也就体现了数学和生活实际联系很大,让学生觉得学好数学有很大的用处。
教学完《尝试与猜想》一课后,在一张综合练习的题卡上,出现了这样一道题。“鸡兔同笼,有17个头,24条腿。鸡兔各有多少只?”这是课堂上练过的习题,并没有什么难度,我想孩子做起来应该是没有问题的。一个学生问我,“老师,这道题可以用“假设法”做。可是我已经忘了假设法怎么做了,你能告诉我吗?”我沉吟了片刻,回忆了一下我上“鸡兔同笼”的经过。
鸡兔同笼出现在“尝试与猜想”中,既然课题是《尝试与猜想》,那么编者的意图一定不再是让我们教给孩子做此类题的技巧,而是通过合理猜测和调整达到想要的结果。不管是枚举还是列表,都是要不断调整自己的假设结果里正确结果更近。也就是要在一个合理区间中不断逼近正确的答案。我记得当时是通过一个幸运52的“猜价格”导入的。孩子在课堂中也展现了自己的很多思路,包括画图,有的孩子还在课外书上读过说让兔都抬起前腿,鸡都金鸡独立。这些有趣的解答方法虽然没有代表性,但也为课堂增添了很多乐趣。孩子对鸡兔同笼问题的记忆还是很深刻的。后来我简要介绍了“假设法”。其实以前我们奥数内容是直接把这种方法教给孩子。这种方法孩子不易理解,也很难自己探索到,但老师教会后,这确实是解答此类问题的最有效方法。在新课改后,我们理解的是:让孩子获得解决问题的方法比掌握一点知识更重要。所以再讲鸡兔同笼问题,课堂的主阵场交给了孩子,孩子自己先列举再调整,这样是费了一些时间。“假设法”的介绍时间相对就短了许多,孩子当时听懂了,过一段又忘了,这实在是再正常不过的事。
这是个聪明的学生,见我半天没有回答,马上说:“老师,其实我记得这节课的内容,就是一时忘了怎么做了。”我说;“那你可以列表看看呀!”。“老师,列表我会,可是那得好一会才能找到答案,太麻烦了,请你告诉我假设法好吗?”我乐了,这孩子并不是解决不了问题,而是怕麻烦。我说:“麻烦点没事,遇事别钻牛角尖,只要能做出来就行”这是个很执着的孩子,他不肯走,一个劲的说:“老师,请你告诉我吧”我又按照课堂上的讲法
给他讲了一遍,他很快听懂了,高兴的走了。我实在不能保证他是不是过一段还会忘。
这件事过去了很久,我一直在想,新课改后,老师的许多观念都发生了变化。我们想给孩子最有价值的东西。最有思维价值的数学方法。希望这些数学思想和方法能伴随孩子的一生,即使在以后的生活工作中不做数学了,也可以用这些思路和方法来解决一些其他的问题。所以我们的价值取向就变了。当时间发生冲突时,我们更愿意让孩子多感受多经历,相对讲授和练习的时间就少了。象鸡兔同笼这样的问题学生掌握假设法,不反复练习是很容易遗忘的。但是一节课的时间是有限的。孩子的经历也是需要大量的时间。就我们现在的价值观来取舍,我们选择了让孩子来自己体会尝试与猜测的快乐!可是,这个孩子的一句话却一直在我的。心里回响:“老师,那样太麻烦了,请你告诉我吧”孩子有他自己的价值取向, 但当他比较之后,他执着的选择了这个简洁的方法。虽然这个方法对于一个孩子的思维来说还是有点生涩难懂。但是,简洁明了不正是数学的魅力吗?我们总是想通过一些别的东西让孩子感受数学的美,当孩子感到数学的魅力去追寻时,我们还迟疑什么呢?对于课改,我们应以平常心去看待。我想,以后我遇到这样的问题,我一定不会迟疑。我会很高兴的告诉他:“孩子,你选择了最简单的方法,老师乐意给你再讲一遍。”
1、教学目标的定位
我把“鸡兔同笼”这个内容划分为两个课时,本节课为第一个课时,在本节课中重点研究解决问题的一般策略——列表。我想通过本节课列表发现的规律为探索新策略奠定一定的基础。在教学过程中,我给学生充分的时间他们经历列表、尝试和不断调整的过程,从中对于列表策略有所体会。学生在这个过程中也出现了多种列表方法,对于多种列表方法引导学生对方法进行优化,从而达到能灵活运用列表解决鸡兔同笼问题。
教学中我补充了其他的解法,但是却分散了学生的注意力,影响了学生对列表方法这一常用方法的掌握。这是本节课的遗憾之处。
2、凸现学习价值
我觉得学习要让学生感兴趣地去学,发自内心的想去学,觉得学习是有用的。而鸡兔同笼问题来于生活。但它高与生活,它需要用一些数学策略去解决,而学习策略以后用来解决生活中的问题。因此在课堂小结时我放手让学生对生活中类似于鸡兔同笼问题的举例,让学生体会到现实生活中此类问题是广泛存在的。进而凸显了本节课的价值。
3、关注结果,也关注过程
结果是比较直接的,容易被大家重视,而过程也是不可忽视的。我们不仅要关注结果同时也需要关注过程。在解题的过程中学生的思维是一大亮点,有些学生想法很有创意但算错了,这样的学生我们应该给予表扬和肯定。
本节课总的来说把我自己定的目标是完成了,但是还有许多值得思考的问题。比如说如何把北师大版的教材和人教版的教材进行结合,让学生更容易理解,展示自己的机会更多,使不同思维水平的学生对于这类问题真正巩固。
《鸡兔同笼》向学生带给了现实、搞笑、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用列举法、假设法、方程等方法,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
鸡兔同笼问题是一类重要数学问题,在现代生活中随处可见。
(1)三轮车和自行车共7辆,17个轮子。三轮车、自行车各有几辆?
(2)小方有2分、5分硬币共10枚,共有32分。2分、5分硬币各有几枚?
回过头来我们在来看一看《孙子算经》里的这道题:今有鸡兔同笼,上有三十五头,下有九十四足。问鸡、兔各几何?你能拭着做一做吗?
对于我班多数的学生来说,学习《鸡兔同笼》可能会有必须的难度。本节课属于综合应用课,其目的是加强数学知识与现实生活中问题的结合,以提高学生综合应用的潜力。借助“鸡兔同笼”这个载体,初步获得一些数学活动的经验,在活动中引导学生自主探索,用心思考,从中体会出解决问题的一般策略。
在本节课的教学中,我感觉:
1、课堂上,多数学生的用心性还是比较高的。先让学生独立思考或小组讨论,再在全班共同交流评价。学生在民主、和谐的氛围中开拓了思维,到达了运用多种方法解决问题的目的。体现了学生是学习的主人。但部分学生会做却不会表达、不敢表达。口语表达潜力欠佳。
2、课堂上,透过学习,使学生明白了假设的数学思想不仅仅能够解答古代趣题――鸡兔同笼问题,还能解答我们身边的问题。体会到数学就在我们身边。
3、课堂上,注重关注每一个同学的发展,在交流探讨中,鼓励不同学生采用不同的解题方法。效果还不错。
本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。让学生获得亲自参与探究学习的积极体验。
按照我对教材的理解,并遵照《新课程标准》中:在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神。首先以观察鸡兔的图片入手,让同学们发现动物身上隐藏着许多的数学问题,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的`重点;接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的解题方法,并试着解释。老师再利用多媒体课件帮助学生理解古人这种独到的解题方法————抬腿法。从而让学生受到古文化的熏陶,感受道古人的了不起。最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。
“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材第十一册中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。特别是用假设法解答,学生理解起来很难,为此我用画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。
我注重从以下几个方面进行数学文化的渗透:
一、介绍中国古代的数学成就。
中国有着历史悠久、成就辉煌的数学文化,出现了许多伟大的数学家和经典的数学名著。结合本节课的教学内容,教师通过向学生介绍记载“鸡兔同笼”问题的数学名著《孙子算经》,介绍古人解决鸡兔同笼问题的巧妙方法,使学生了解数学知识丰富的历史渊源,感受古人的聪明智慧,增强民族的自豪感。
二、渗透解决问题的思想方法。
数学思想方法是数学文化的精髓,教师有意识地向学生渗透一些基本的数学思想方法,可以加深学生对数学知识的理解,提高学生的思维品质。结合本节课的数学内容,教师适当渗透了化繁为简、猜测验证、假设、数形结合等思想方法,其目的不仅是让学生掌握好本节课的基础知识和基本技能,更重要的让学生了解一些解决问题的策略,提高解决问题的能力。
三、注重数学模型的实际应用。
在数学教学中,从学生已有的生活经验出发,让学生亲身经历讲实际问题抽象成数学模型并进行解释与应用的过程,能激发学生的兴趣,让他们全身心地投入学习。结合本节课的教学内容,教师安排了大量与“鸡兔同笼”有着类似数量关系的问题,让学生会用数学的思维方式去观察、分析周围世界,并且在这现实的、有意义的,富有挑战性的探索活动中,加深对数学知识的理解与掌握,感受到数学的真谛与价值。
但在平时的教学中也存在值得我们进一步思考的问题:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;
2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;
3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
在《鸡兔同笼》的教学过程中,我主要体现的教学思想是:培养深入思考的意识,养成不断追问的习惯,形成数型结合的策略,主张奇思妙想的胆识。
1、给学生创设一个开放、自由的空间,让学生真正成为课堂的主人。课堂上,我允许学生用自己喜欢的方法解决问题,并给学生搭建一个展示的舞台,充分张扬学生的个性。才使课堂出现争先恐后、积极主动参与解决问题的场景。
2、多种数学思想、方法的渗透,提高了学生的解题能力。本节课学生不仅学会了基本的画图、列表这两种解决问题的方法,还学会了假设、折半、金鸡独立、兔子起立等巧妙的解决问题的方法。受到了多种数学思想方法的熏陶。培养了孩子解决问题的能力,提高了孩子的思维水平。
3、师生交流充分,交流作用发挥明显。课堂上,学生各自发表自己的意见,倾听别人的意见。互相评价,取长补短。渠道畅通,课堂是流动的,有生命的,学生的交流如春雨滋润着孩子的心灵,使学生的思维在交流中不断提升。
4、教学设计重点突出,使学生掌握了基本的解决鸡兔同笼问题的方法。课堂上,虽然解决问题的方法很多,但是画图法、列表法是解决问题的基本方法。在课堂上教师重点让学生展示了这两种方法,并进行了师生质疑,使基本方法人人都会,其他方法作为开阔学生的思路,简化处理。使不同的学生学不同的数学,不同水平的孩子在课堂上都有所收获。
5、教学中存在着不少问题:
(1)预设学情的初知不足,起点太高,在出示例题时,隐藏的条件没有说明,导至后面解题中鸡、兔各有几只脚都不知;
(2)课堂组织的有效管理不到位,导至许多学生没有认真倾听、认真独立思考,练习不会,教学内容完成不了。
6、课后给我留下一个深思的问题:
(1)课堂中是看老师的表现还是学生的表现?
(2)孩子在课堂中是否学的快乐?
(3)孩子是否学的有效?