身为一位优秀的教师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的课堂经验,快来参考教学反思是怎么写的吧!以下是可爱的小编枫为大伙儿整编的12篇因数和倍数教学反思,欢迎阅读,希望能够帮助到大家。
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。我觉得这部分内容学生初次接触,对于学生来说是比较难掌握的内容。尤其对因数和倍数和是一对相互依存的概念,不能单独存在,不是很好理解。我通过捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。所以在上课之前我特意和孩子们玩了一个小游戏。用“我和谁是好朋友”这句话来理解相互依存的意思。即“我是谁的好朋友”,“谁是我的好朋友”,而不能说“我是好朋友”。学生对相互依存理解了,在描述因数和倍数的概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来帮助学生理解因数和倍数的概念。
一是教材虽然不是从过去的整除定义出发,而是通过一个乘法算式来引出因数和倍数的概念,但本质上任是以“整除”为基础。所以我上课时特别注意让学生明白什么情况下才能讨论因数和倍数的概念。我举了一些反例加以说明。
二是要学生注意区分乘法算式中的“因数”和本单元中的“因数”的`联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。三是要注意区分“倍数”与前面学过的“倍”的联系与区别。“倍”的概念比“倍数”要广。可以说“1.5是0.3的5倍”,也可以说“1是3的5倍”,但我们只能说“15是3的倍数”,却不能说“1.5是0.3的倍数”。我在课堂上反复强调,帮助孩子们认真理解辨析,所以学生一节课下来对这组概念就理解透彻了,不会模糊了。
这个单元课时数比较多,对于学生数感的要求比较高,对于学生观察能力,比较能力,推理能力的培养是个很好的训练。通过一个单元的教学,发现学生在以下知识点的学习和掌握上还存在一些问题:
1、最大公因数和最小公倍数
教学中,我让学生经历了三种方法:法一是先找各数的因数(或倍数),再找两个数的公因数(或公倍数),最后再找最大公因数和最小公倍数;二是介绍短除法;三是对于特殊关系的数(倍数关系或互质数)直接根据规律写结果。根据复习和练习反馈,发现学生对数的感觉比较欠缺,特殊关系的数不容易看出来,且两个概念有时还会出现混淆情况,也就是对因数和倍数的理解不够透彻与深刻。如果学生对找最大公因数和最小公倍数学不扎实,将直接影响到后面的约分和通分。所以我准备在平时每节课都有三到五个训练,并进行专项过关。在应用这个知识解决实际问题时,有少数后进生比较难以理解,需要辅助图形来分析,也需要一个时间的积淀过程。
2、质数合数与奇数偶数
这四个概念按照两个不同的标准分类所得。学生在分类思考时对概念的理解比较清晰,但混同在一起容易出现概念的交叉,如2既是质数又是偶数,9既是合数又是奇数。
3、235倍数的特征
如果单独让学生去说去判断一个数是不是235的倍数,学生比较清楚,但在灵活应用时就比较迟钝,特别是用短除法寻找公因数时,不能很快的进行反应,数的感觉不佳。
以上是本单元学生在学习过程中的主要障碍,数感的培养需要一个过程,而概念的理解加深还需要平时不断的训练。多给学生一点耐心,再坚持一份恒心,相信学生们会有提高,会有改变。
《倍数和因数》是四下第九单元的内容。教学时,我首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出倍数和因数的意义。这样在学生已有的知识基础上,从动手操作到直观感知,让学生自主体验数与形的结合,进而形成倍数与因数的意义,使学生初步建立了“倍数与因数”的概念。根据算式直接说明谁是谁的倍数,谁是谁的因数,学生很容易接受,再通过学生自己举例和交流,进一步加深对倍数和因数意义的理解。从学生的反应和课堂气氛来看,教学效果还是不错的。
能不重复、不遗漏、有序地找出一个数的倍数和因数,是本课的教学难点。教学时,我先让学生自己找3的倍数,汇报交流后通过对比(一种是没有顺序,一种是有序的)得出如何有序地找一个数的倍数的方法。对于倍数,学生在以前的学习中已有所接触,所以学生很容易学,用的`时间也比较少。
对于找一个数的因数,学生最容易犯的错误就是漏找,即找不全。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。这样的板书帮助学生有序的思考,形成明晰的解题思路。学生通过观察,发现当找到的两个自然数非常接近时,就不需要再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点。
因数与倍数属于数论中的知识,是比较抽象的,学生学习理解起来有一定的难度,本节课是在充分借助学生已有的知识经验的基础上切入课题。学生在此之前已经认识了乘法各部分名称,对“倍”叶有了初步的认识,从而本课由此入手,让学生由熟悉的知识经验开始,结合问题引发学生提升思考并发现新的知识结构,体会到此“因数”非彼“因数”,感觉到“倍”与“倍数”的不同。
在探索找一个数的'因数的方法时,为了让学生更加形象地体会出“要按照一定的顺序去找”才不会遗漏和重复,本课制作了动态的数轴图,通过演示18的因数有1、18(闪动),2、9(闪动),3、6(闪动)学生直观地看到了“顺序”,并且在观察中看到区间不断的缩小,到3至6时观察区间,真正体会到了“找前了”这一学生难以真正理解的地方。
本课中还要注意到的就是学生在汇报找到了哪些数的因数时,教师根据学生汇报所选择板书的数字要有多样性,如选择板书的数要有奇数、偶数、质数、合数等,虽然此时学生还不知道这些数的概念,但这时给学生一个全面的正面印象,有的数因数个数多,有的少,不是一个数越大因数的个数越多……为后面的学习做好铺垫。
本节课是在学生已经学习了一定的整数知识的基础上进行教学的。
课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的`含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
本节课的不足之处:
1.练习设计容量少了一些,导致课堂有剩余时间。
2.对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。
在本课教学时,先让学生用12个同样大小的正方形,摆成一个长方形,并用乘法算式把自己的摆法表示出来,让学生动手操作、合作交流,怎样摆,有哪些不同的摆法?先让学生小组交流、操作后,以其中的一道乘法算式为例,引出倍数和因数的概念。
这样的安排,体现了以学生为本,用学生已有的经验和动手操作能力,很好的调动了学生学习的积极性和主动性。
一方面让学生乐于接受,是学生在展示自己的想法,老师仅仅是组织者。另一方面培养了学生善于观察和倾听他人的想法的良好学习态度。对于找一个数的倍数比找一个数的因数的方法要容易些,所以我先教学如何找一个数的倍数,在学生学会了找一个数的倍数的方法基础上,再教学如何找一个数的因数,这样教学便于学生自己探索并总结归纳出找一个数的因数的方法,体现了让学生自主学习。
在处理本节课的难点找36的因数时,我原来是放手让学生自己去找的。结果试上时很多学生没有头绪,无从下手。时间倒是花去不少,可方法却没有多少可行的。我静下心来寻找原因,找一个的因数是学生以前从未遇到过的问题,自然不知道如何解决。再加上找一个数的因数比找一个数的倍数要难得多,我这样贸然地放手,学生当然不知所措了。
后来,在处理找36的因数时,如何做到既不重复又不遗漏地找36的因数?我认为要对学生扶放得当,要有适当地扶,学生才能探索出方法。于是,我让学生回忆刚才的'几道乘法算式,然后把找一个数的倍数的方法有效的迁移到找一个数的因数中。果然学生知道了该如何思考后,效果好了很多。
这是一篇写景物的记叙文。记叙了作者七月骑马上天山所看到的美丽的自然风光。表达了作者对祖国边陲天山风景的喜爱之情。
课文的写作思路是:先总述七月的天山是游人最理想的地方;接着分述了作者骑马上天山所看到的雪峰、溪流、原始森林和遍地的野花的奇异美景;最后作者抒发了对天山美景的赞美之情。
前几天听了于小冬教师上的一节《七月的天山》,给了我很大的启发。于是,在我上略读课文《七月的天山》的教学时,我也依照她的课堂教学中的亮点,就抓住一个问题展开:“七月的天山留给你最深的印象是什么?”学生马上蹦出一个词:“美!”自然后面就可以接着问了:“美在哪些字里行间啊?”指名的学生先说到了“雪山”,自然要体会其中的两处比喻,从中体会了比喻的妙处,再用朗读体现雪山的壮丽,由雪山的壮美再到雪水的欢快。接着学生找到了“花”、“塔松”、“鱼儿”三处,都进行了深入理解,并结合句子开展联想说话,用朗读表现。学生在理解中感受了美,而且有大到整体的理解,小到一个句子,一个短语,一个词语,小到一个字“浮”“捧”的深入理解;还从作者角度去理解他的写作情感,小到从“心爱”感受作者对天山的深情;一字一句都表现出了作者用词的准确,无形当中,对学生进行了写法的渗透。最后在赞美天山中结束了一节课的学习。学生明白了这天山美丽、幽静却又生机勃勃。正是雪山上的雪水给了这些花草树木、鱼儿浇灌,才会有那些生机勃勃的树和那些欢快的鱼儿。
《因数和倍数》是一节概念课。教学时我首先以拼图比赛为素材,让学生动手操作快速把12个小正方形摆出一个长方形,再让学生用乘法算式表示出所摆的长方形,在交流中得到三种不同的摆法和三种不同的乘法算式。借助乘法算式引出因数和倍数的意义,使学生初步建立了“因数与倍数”的概念。 这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。
能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的'倍数后,我紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。
最后引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。
由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学手段,提高学困生的学习效率。
这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
一、操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
二、自主探究,意义建构,找倍数和因数
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始�
新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。
找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时间,最后就没有很多的时间去练 如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。
三、变式拓展,实践应用---—促进智能内化
练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
《因数和倍数》是一节数学概念课,是比较抽象的,本册教材在引入因数和倍数的概念时与以往的教材有所不同。本节课是这一单元的的教学重点。为让学生很好的感受因数与倍数的意义,能够熟练的找出一个数的因数与倍数,灵活地处理了教材,分为两课时进行。第一课时只让学生认识了因数和倍数的意义及找一个数的因数的方法。
一、设计情境,引起思考。
创造性的使用教材,引起学生思考,板书15÷0.3=50,1.5÷3=0.5,1.5÷0.3=5,15÷3=5引出除尽和整除的含义,从而明确了因数倍数的研究范围,进而理解决因数与倍数的意义。对于因数与倍数的依存关系,学生在理解时比较抽象,我就放到具体算式里,算式由学生举例,反复去说谁是谁的`倍数,谁是谁的因数,在课堂中反复强调,帮助学生认真理解辨析,从而理解了因数与倍数之间的相互依存关系。学生一节课下来对这组概念就理解透彻了,就不会模糊了。
二、引导学生探求找因数的方法。
如何找一个数的因数是这节课的又一个重点,首先让学生找出24的因数,由于个人经验和思维的差异,出现了不同的方法与答案,在探索这些方法和答案的过程中,学生明白了如何求出一个数的因数的方法,从而掌握了知识点。
根据学生的学习特点,灵活的应用教材,使之服务于教学,让教学有效的进行,才能达到教学的目的。在探索找一个数的因数的方法时,为了让学生更加形象地体会出“要按照一定的顺序去找”才不会遗漏和重复,充分运用多媒体,通过演示18、24、77、1的因数,让学生直观地看到了“顺序”,学会有序思考,体会到了求一个数的因数的方法。与此同时学生直观观察发现一个数的因数都有1和它本身,最小的因数是1,最大的因数是它本身,不是数字越大因数个数就越多,一个数的因数的个数是有限的等等重要相关知识,这些发现与课堂练习息息相关,形成本节课完整的知识体系,还为后面的学习做好铺垫。课堂练习完成的很好,起到学以致用的学习效果。培养学生的概括能力、归纳能力,抽象能力得以进一步发展。
《倍数和因数》这一资料与原先教材比有了很大的不一样,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而此刻是在未认识整除的状况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分资料学生初次接触,对于学生来说是比较难掌握的资料。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、决定,需要一个长期的消化理解的过程。
这节课我在教学中充分体现以学生为主体,为学生的探究发现带给足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
(一)操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不一样的长方形,再让学生写出不一样的乘法算式,借助乘法算式引出因数和倍数的好处。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而构成因数与倍数的好处。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
(二)自主探究,好处建构,找倍数和因数
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始�
新课程提出了合作学习的学习方式,教学中的多次合作不仅仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习潜力,初步构成合作与竞争的意识。
找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的。巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时光,最后就没有很多的时光去练 如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有必须困难,那里能够充分发挥小组学习的优势。先让学生自我独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按必须的次序进行。之后让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自我刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。
(三)变式拓展,实践应用---—促进智能内化
练习的设计不仅仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地理解。教学之前我明白这节课时光会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时光安排的能够少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时光,直接出示,,实际效果我认为是比较理想的。课上还就应及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自我的发现:最小的因数是1,最大的因数是它本身。教师就应及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。
一、单元主题图体验数学化过程。单元主题图是教材中的一个重要内容,它是选择某一个主题构建的一幅情境图,本单元就出现了“数的世界”单元主题图。在教学中,我是从培养学生的问题意识出发来组织教学的,首先让学生独立观察主题图,通过独立思考提出问题;然后让孩子们通过小组合作,共享学习的成果;最后通过解决问题,体验获取知识的过程。教学中学生不仅很快找到了整数、小数、负数,而且也找到了橙子卖完了用“0”表示,图中有一个凳子、一张桌子用“1”表示,更多的是学生提出了很多的数学问题,如我有50元可以买多少千克苹果?学生真正是在自主学习的过程中提出问题、解决问题,体验“数学化”的过程。
二、数形结合实现有意义建构。教材中对因数概念的认识,设计了“用小正方形拼长方形”的操作活动,引导学生在方格纸上画一画,写出乘法算式,再与同学进行交流。在思考“哪几种拼法”时,借助“拼小正方形”的活动,使数与形有机地结合,防止学生进行“机械地学习”;学生对因数和理解不仅是数字上的认识,而且能与操作活动与图形描述联系起来,促进了学生的有意义建构,这是一个“先形后数”的过程,是一个知识抽象的过程。
三、探索活动关注解决问题的'策略。学生在探索活动中,运用做记号、列表格、画示意图等解决问题的策略来发现规律和特征,在探究的过程中,体会观察、分析、归纳、猜想、验证等过程,孩子们学会了思考,初步形成了解决问题的一些基本策略。
四、困惑:
1、第一次真正开始教北师大教材,最大的感觉是教学的空间真的扩大了,课堂活跃了,但是同时给学生进行课后辅导的时间也增加了,每节课从学生的反馈看来,却有相当一部分的学生存在各种问题,教材中太缺乏那些能让他们成功的“基础性”题目,整个一个单元只有一个练习一,那六道题目真的能解决问题吗?能否多给孩子们一些选择。
2、不太明白为什么一定要使用“因数”这个概念,比较“因数——公因数——最大公因数——约分”和“约数——公约数——最大公约数——约分”,总觉得后者容易接受吧。这一改好像我们还得教学生家长,就真的有学生家长投诉说“老师啊,你教错了,那不是因数,是约数……”,让人哭笑
《数学课程标准》倡导“自主——合作——探究”的学习方式,强调学习是一个主动建构的过程。因此,应注重培养学生学习的独立性和自主性,让学生在教师的指导下主动地参与学习,亲历学习过程,从而学会学习。
1、以“理”为基点,将学生带入新知的学习。
概念教学重在“理”。学生理解“因数”、“倍数”概念有个逐步形成的过程,为了促进这一意识建构,我先让学生通过自己已有的认知结构,经过“排列整齐的队形——形成乘法算式——抽象出倍数因数概念——再由乘法或除法算式——深化理解”,使学生在轻松、简约并充满自信中学习新知,在数与形的结合中,深刻体验因数倍数的概念。
2、以“序”为站点,培养学生的思维方式。
概念形成得在“序”。学生对于概念的形成是一个由表及里、由形象到抽象的过程。当学生对概念有了初步认识后,让学生探索如何找一个数的倍数的因数,这既是对概念内涵的深化,也是对概念外延的探索。这时思维和排列上的有序性是教学的关键,也是本节课的深度之一。在教学时,分为两个层次:第一个层次是让学生在已有的知识基础上找12的因数,并在交流中,经历了一个从无序到有序、从把握个别到统揽整体、从思维混沌走向思维清晰的过程。抓住教学的难点“如何找全,并且不重复不遗漏”,让学生自由地说,再引导学生说出想的过程,并加以调整。表面看来仅仅是组合的变换,实质上是思维的提高和方法的优化,并让学生在对比中感受“一对一对”找因数的方法,经历了互相讨论、相互补充、对比优化的过程。第二个层次是在学生已经有了探索一个数因数的方法,具备了一定有序思考的能力之后,启发学生“能像找因数那样有序的'找一个数的倍数”,提高了学生的思维能力。
3、以“思”为落脚点,培养学生发现思考的能力。
概念的生成重在“思”,规律的形成重在“观察”,教师如果能在此恰到好处的“引导”,一定会让学生收获更多,感悟更多。因此设计时,我借助了“找自己学号的因数和倍数”这个活动,在大量的有代表性的例子面前,在学生亲自的尝试中,在有目的的对比观察中,学生的思维被逐步引导到了最深处,知道了一个数的最大因数和最小倍数都是它本身,反过来也是正确的。教师在这里提供了有效的素材,可操作的素材,促使学生对所学的概念进行了有意义的建构,促进和发展了他们的思维。