倒数的认识教学设计(优秀8篇)

作为一名人民教师,时常需要用到教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那要怎么写好教学设计呢?下面是整理的倒数的认识教学设计(优秀8篇),在大家参照的同时,也可以分享一下给您最好的朋友。

六年级数学《倒数的认识》优秀教学设计 篇1

教学目标:

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

教学重点:

理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

教学难点:掌握求倒数的方法。

教具准备:多媒体课件。

教学过程

一、旧知铺垫(课件出示)

1、口算:

(1)× × 6× ×40

(2)××3××80

2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

二、新授

1、课件出示知识目标:

(1)什么叫倒数?怎样理解“互为”?

(2)怎样求一个数的倒数?

(3)0、1有倒数吗?是什么?

2、教学倒数的意义。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

(2)学生汇报研究的结果:乘积是1的两个数互为倒数。

(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

3、教学求倒数的方法。

(1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

4、教学特例,深入理解

(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

5、同桌互说倒数,教师巡视。

三、当堂测评

1、练习六第2题:

2、辨析练习:练习六第3题“判断题”。

3、开放性训练。

3/5×( )=( )×4/7=( )×5=1/3×( )=1

四、课堂总结

你已经知道了关于“倒数”的哪些知识?

你联想到什么?

还想知道什么?

设计意图

倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

教学后记

第十一、十二课时:整理和复习

倒数的认识教案 篇2

教学内容:

苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。

教学目的要求:

认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。

教学重点难点:

掌握求倒数的方法,能熟练得求一个数的倒数。

教学过程:

一、导入新课

问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

二、新授

教学例题

(1)出示例7

下面的几个分数中,哪两个数的乘积是1?

(2)学生回答。

(3)引出概念。

乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。

(4)学生举例来说。进行及时的评议。

(5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?

归纳方法

小组讨论:

观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?

全班交流。

求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

问:5的倒数是几?1的倒数是几?

学生回答,并说原因。

追问:0有倒数吗?为什么?

指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

教学“练一练”

学生回答。

提醒学生正确地书写格式。

三、巩固练习。

1、做练习六第17题

学生填书上后,集体订正,并说说是怎样想的。

2、做练习六第18题

指名口头回答,选择两题让学生说说思考的过程。

3、做练习六第19题

重点引导学生讨论每一组数的规律。

4、做练习六第21题

5、做思考题

联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?

四、全课总结

这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

五、作业

练习六第20题

倒数的认识教案 篇3

教学内容

倒数的认识

教学目标

1、通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2、使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

3、通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

教学重难点

教学重点

理解倒数的意义,学会求倒数的方法。

教学难点

发现倒数的一些特征。

教具准备

课件

设计意图

教学过程

特色设计

通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

一、猜字游戏引入新课

找找下面文字的构成规律

呆———杏 土———干吞———吴

按照上面的规律填数

——( ) ——( ) ——( )

能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

二、新知探究

(一)探究讨论,理解倒数的意义。

1.课件出示算式。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。

我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2.出示倒数的意义:乘积是1的两个数互为倒数。

3.你是怎样理解互为倒数的呢? 能举例吗?

(二)深化理解。

1.乘积是1的两个数存在着怎样的倒数关系呢?

2.互为倒数的两个数有什么特点?

3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

因为1x1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

(三)运用概念。

1.讨论求一个数的倒数的方法。

出示例2:写出其中3/5 、7/2 两个分数的倒数。

学生试做讨论后,教师将过程 。

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

2、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

三、巩固练习

(一)完成教材第28页的“做一做”

(二)完成教材第29页练习六的第1-5题。

四、课堂小结

今天我们学习了有关倒数的哪些新知识?

《倒数的认识》教学设计 篇4

教学目标

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的观察能力和概括能力。

教学重点和难点

1.正确理解倒数的意义及互为的含义。

2.正确地求出一个数的倒数。

教学过程设计

一、创设情境,提出问题。

师:我们知道语言文字中有些字是可以倒过来写的。

比如:吴吞

学生举例:杏呆。

师:数学中有没有这种情况呢?

你能把4/7倒过来写吗?

板书:4/7--(7/4) 8/3--(3/8) 2--(1/2)

师:你能根据分子、分母的位置关系给这几组数取个名字吗?

生:倒数。

出示课题:倒数的认识。

二、教学倒数的意义.

(1)5/81/8 7/155/7 61/2 1/405

(2)3/44/3 6/77/6 31/3 2/99/2

教师:上面的两组题有什么不同?(第一组每个算式中两个数相乘的积都不是1,第二组每个算式中两个数相乘的积都是1.)

教师:像第二组这样,乘积是1的两个数叫做互为倒数.

教师举例说明什么叫做互为倒数.

3/4和4/3互为倒数,就是3/4的倒数是4/3,4/3的倒数是3/4.

教师:倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数.

让学生试着说一说第二组其它3个算式中两个数的关系.说的时候,注意让学生说出互为倒数,同时,让学生明确谁是谁的倒数.

教师:谁还能举出几组两个数互为倒数的例子?多让几个学生说一说,并让学生根据倒数的意义来检验是不是正确.

三、教学例题(求倒数的方法).

教师:请同学们仔细观察上面第二组算式,想想两个什么样的数就互为倒数.如果给你一个数你能找出它的倒数吗?让学生适当讨论,并对发现的规律进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.

出示例题. 怎样找出 的倒数呢?你能用刚才发现的规律找出来吗?使学生想到只要把 的分子、分母调换位置就是 的倒数.教师板书:

分子、分母调换位置───的倒数就可以让学生自己写.

教师接着问:自然数5的倒数是多少?5可以看成分母是几的分数?(可以看成分母是1的分数.)

那么5的倒数怎样求?(把分子、分母调换位置,3的倒数就是1/5.)

教师:任意一个自然数的倒数应该怎样求?(一个自然数的倒数就是以这个自然数作分母以1作分子的分数.)

接着问:是不是所有的数都有倒数?什么数没有倒数?(0没有倒数.)

0为什么没有倒数?(因为0不能作分母,所以0没有倒数.)

教师:请大家总结一下求一个数的倒数的方法.让学生多说一说,教师注意提醒学生把0排除在外.

四、课堂练习。

写出下面各数的倒数:

4/13 9 1/7 25

反思:本节课的导入部分,我注意从文字中找数学的原形,使学生感到新颖、有趣,激起学生的好奇心,激发学生探究的欲望。并以问题为主线,由学生自己提出问题,自己讨论解决,培养了学生的问题意识,通过学生主动的数学活动建构倒数的意义,掌握求倒数的方法。

倒数的认识教案 篇5

第一课时

【学习内容】

义务教育课程标准实验教科书(西师版)小学数学六年级上册第31页例1及填一填。第32页课堂活动第1题(1),练习八第1、2、3题。

【学习目标】

1、理解倒数的意义。

2、掌握求倒数的方法,会求一个数的倒数。

3.经历探究倒数的意义的过程,培养自主探究、归纳概括的能力。

【学习重点】

理解倒数的意义,掌握求倒数的方法。

【学习难点】

理解特殊数的倒数。

【课时安排】

1课时。

【学习过程】

一、复习巩固(利用投影打出以下算式)

× = × = 6× = ×40 =

× = × = 3× = ×80=

1、让学生口算出上边等式的结果,以此复习分数乘法的相关知识。

2.让学生观察并说说下边排分式的特点从而对倒数有一定的感知。

二、让学生观看书上例题1, 分组合作,讨论解疑。

1、出示例1。 自主学习例1,相信自己是最棒的!

例1,观察下列每组数,你有什么发现?

和 和 和 3和

教师提示:1.观察每组数中的分子、分母、找出规律。

①学生思考,小组交流。②集体汇报

汇报:每组数中的两个数的分子和分母都调换了位置。

2、将每组数中的两个数相乘,计算出结果。你发现了什么?

①学生思考,小组交流。②集体汇报

汇报:每组数中的两个数相乘,积都等于1.

归纳总结:像刚才这样的一组数叫做互为倒数。乘积是1的两个数互为倒数。(板书)

3、让学生总结倒数的特点。

分子、分母的位置 互相颠倒 倒数指的是 两个数 之间的关系。

4.让学生来说说课堂活动中1题(1)。(明确:两个数互为倒数)

三.训练探索 求 的倒数

①学生思考,小组交流。②集体汇报

学生板演:让一个学生写出来。

学生讲解:让另一个学生总结求倒数的方法。

总结:求一个数的倒数, 只要把这个数的分子、分母调换位置。

四.合作探究

1.提问:整数有没有倒数,如果有该怎么求,举倒分析。

①学生:小组交流,举倒说明。

②集体汇报

2.提问:0和1的倒数是多少?

①学生思考,小组交流。(教师提示:从分数、除法之间的关系去考虑。)

②集体汇报

③总结:0没有倒数,因为除法中0不能作除数,除数相当于分数中的分母,所以0不能作分母。因此0没有倒数,1的`倒数是它本身。

总结(板书) 求倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

五,课堂练习:让学生做教材31页“填一填”

①学生独立完成。

②集体订正。

六.出示投影,探究小数的倒数。

①学生思考,小组交流。②集体汇报

③教师总结:小数也有倒数,与小数乘积为1的数就是小数的倒数。

七.出示投影,探究带分数的倒数。

①学生思考,小组交流。

②集体汇报

③教师总结:带分数要先转化成假分数后,把分子、分母调换就是这个带分数的倒数。

八.出示投影,达标检测。

把互为倒数的两个数连线。

【当堂检测】

做练习八(1、2、3)题

【拓展延伸】

1、假分数的倒数( )

A.大于1 B 小于1 C 小于或等于1

2.一个数的倒数小于1,这个数( )1

A 大于 B 小于 C 等于

九、课堂小结:通过这两节课的学习,你有什么收获?

学生畅谈收获心得,提出自已还不理解的地方,集体帮助解答。

板书:1、乘积是1的两个数互为倒数。

2、求一个数的倒数, 只要把这个数的分子、分母调换位置。

3、0没有倒数,1的倒数是它本身

【教师反思】

六年级数学《倒数的认识》优秀教学设计 篇6

教学目标:

1、使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

2、培养学生观察、归纳、推理和概括的能力。

教学过程

一、创设活动情景,引入概念

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

让学生读一读:“倒数”。

出示倒数的意义:乘积是1的两个数互为倒数。

二、探究讨论,深入理解

让学生说说对倒数意义的理解。

提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

判断下面的句子错在哪里?应该怎样叙述。

因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。

三、运用概念,探讨方法

出示例2,找一找哪两个数互为倒数?

汇报找的结果,并说说怎样找的?

1、 看两个分数的乘积是不是1;

2、 看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

通过具体实例总结归纳找倒数的方法。

(1)找分数的倒数:交换分子与分母的位置。

例:

(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

例:

四、出示特例,深入理解

看一看,例2中的哪些数据没有找到倒数?(1,0)

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、关于1的倒数。

因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

也可以这样推导:

1的倒数是1。

2、关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

也可以这样推导:

分母不能为0,所以0没有倒数。

五、巩固练习

1、完成“做一做”。先独立做,再全班交流。

2、练习六第3题。

用多媒体或投影逐题出示,学生判断,并说明理由。

3、同桌进行互说倒数活动(练习六第2题)。

六、总结

今天学习了什么?

什么叫倒数?怎样找出一个数的倒数?

《倒数的认识》教学设计 篇7

【教材依据】

倒数的认识是义务教育课程标准试验教科书北师大版小学五年级数学(下册)第三单元中的第一节课内容。

【设计思路】

1、指导思想:

让学生通过文字游戏感受民族语言文字的美,激发学生学习新知的热情,进一步利用同桌关系让学生理解“互为”的含义。自然地引领学生进入到数学王国,理解倒数的概念。利用倒数的概念学会找一个数的倒数的方法。

2、设计理念

本节课内容与学生以前所学的知识联系不大,学生也很容易接受和理解,因此在设计本节课内容的时候,主要从学生的生活实际出发,利用游戏来调动学生学习的积极性,让学生在玩游戏的过程中掌握本节课的知识点,尽量分散难点,突出重点,这样学生容易接受。 3、教材分析

本节课的内容是倒数的认识,主要是让学生了解倒数的概念,能正确的找一个数的倒数,知道1的倒数是1,0没有倒数。会找小数和带分数的倒数。因此在设计教学的时候,我是一步一步进行深入的,先引导学生认识倒数的概念,理解倒数具备的条件,会找一个数的倒数。(真分数和整数的倒数),紧接着在学生练习的过程中引入小数和带分数,引导学生理解如何找小数和带分数的倒数,从而让学生熟练的掌握找小数和带分数倒数的方法。

【教学目标】

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出一个数的倒数。

(2)能力目标:引导学生学会观察、归纳,培养学生学会在小组内与人交流,与人合作的意识。从而提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:培养学生学习数学的兴趣,探寻数学知识的欲望以及良好的学习习惯。

【教学重点】:倒数的意义与求法。

【教学难点】:1、0的倒数,小数、带分数倒数的求法。

【教学过程】:

一、 创境导课、激发兴趣。

1、 文字游戏:

师:同学们,我们在学习新课之前,来做个文字颠倒游戏,比如老师说:“人小”,大家可以说“小人”,好不好,有情趣没有?

生:(大声喊道)好!

师:学科

生:科学

师:人人为我,

生:我为人人。

师:上海自来水,

生:水来自海上

师:同学们,刚才的文字颠倒游戏好玩不?

生:好玩。

师:那我们再来玩一种文字游戏,大家听好了,老师说“秦少坤是朱倩倩同学的同桌”,还可以怎么说呢?

生:还可以说“朱倩倩是秦少坤同学的同桌。”

师:老师能不能理解为“秦少坤和朱倩倩同学互为同桌呢?

生:开始有些迟疑,然后回答到“可以”。

板书“互为”

2、 数字游戏:

师:同学们,我们的民族语言文字有这样的美妙,其实在数学王国也存在着这样的美,我们不妨来试试。老师比如说“3/4,大家就来说4/3.

师:6/7

生:7/6

师:8/9

生:9/8

师:像这样6/7和7/6的两个数就互为倒数。

师问:那么什么是倒数呢?谁知道?

生:没人回答。

师:既然大家不知道什么是倒数?我们就先来看一下几道练习题。

二、 探究新知:

(一) 倒数的概念:

1、出示下列习题。

4/5×5/4= 6/7×7/6= 1/8×8= 2/3×3/2= 5×1/5= 2/9×9/2=

(1) 指名学生回答。

(2) 学生观察这些算式有什么特点?

(3) 小组内进行交流。

(4) 各组汇报交流的情况。

(5) 师总结归纳:

② 这些算式的乘积都是1. 这些算式中分子和分母都打颠倒了。

2、 学生齐读倒数的概念,理解倒数具备的条件。

(二)、找一个数的倒数的方法:

师:那么我们刚才认识了倒数的概念,如何去找一个数的倒数呢? 生:交换分子和分母的位置就可以了。

师:好,老师现在给大家出几道练习题,大家试试看,能不能正确地找出一个数的倒数。

生:欢呼雀跃(表现出极其热情的表情)。

师:4/5的倒数是( ),5/6的倒数是( ),

0.2的倒数是( ),1 1/2的倒数是( )。

生:相互交流,然后每个小组派出一个代表来汇报交流的结果。 学生汇报:

生A:4/5的倒数是5/4, 5/6的倒数是6/5。

生B:0.2的倒数是1/0.2, 1 1/2的倒数是2. 板书:像这样乘积是1的两个数互为倒数。

生C:我和上面的同学答案一样。

师:老师可以明确的告诉大家同学B的回答是错误的,那么正确的答案又是多少呢?小数和带分数如何去找它们的倒数呢?

生:叽叽喳喳,没人敢回答。

师:既然大家都不会,老师来告诉大家:小数在找倒数的时候,首先要将这个小数化成分数,然后将分数的分子和分母的位置交换即可。带分数在找倒数的时候,要将带分数先化成假分数,然后交换分子和分母的位置即可。大家会了吗?

生:(齐声回答)会了。

生:再次将刚才做错的题目纠正过来。

师:同学们,老师碰到了一个难题,有人问老师数字0和数字1的倒数是多少?老师有点不知道,大家能帮老师这个忙吗?帮老师找到这个答案,好不好?

生:好

生:小组内交流,然后汇报交流结果。

(二) 特殊数字的倒数:

生1:我们小组一致认为数字0没有倒数,因为0×0=0,根

据倒数的概念判断,乘积是1的两个数才互为倒数,所以我

们认为0没有倒数。

生2:我们小组大家都认为数字1的倒数的1,因为1×1=1,

根据倒数的概念进行判断,乘积是1的两个数互为倒数。所

以1的倒数是1.

师:同学们,你们刚才的表现太棒了,大家说的一点都没错,

看来大家对倒数的概念已经理解了,老师很欣慰。

板书:1的倒数是1,

0没有倒数。

三、 巩固练习:

1、 3/5的倒数是( ), 0.5的倒数是( )。

2、判断:

①、 1没有倒数。( )。

②、0的倒数是0( )。

③、0.4的倒数的2/5( )。

四、 拓展练习:

列式计算:

1、4/7乘以它的倒数是多少?

2、1/6乘以2/3的倒数,积是多少?

五、课堂小结:

师:同学们,本节课即将结束,大家在本节课中学到了那些知识?请你用:“我最高兴的是??,令我最思索的是??,令我最想说的是??,令我最满意的是??”中的一句或者多句对本节课进行总结一下。

生1:令我最高兴是本节课我认识了新的一种数-----倒数。 生2:令我最满意的是本节课我不但认识了一种新的数—倒数,而且我学会了找一个数的倒数的方法。

??

五、 作业:

板书设计:

倒数的认识

像这样乘积是1的两个数互为倒数。

1的倒数是1, 0没有倒数。

【有效反思】:

本节课教学自己感觉成功之处是:

1、学生对倒数的概念理解了,知道倒数必须具备的条件是什么,会找一个数的倒数。

2、学生课堂上参与率高,在小组内能和大家相互讨论、相互交流,学会了与人合作的能力。

不足之处是:

1、学生对找小数和带分数的倒数的方法掌握的不够熟练,全班有。

1/3的学生没有很好的掌握这个知识点,需要课后及时进行辅导。

2、本节课在设计练习题的时候没有照顾到学困生的学习,这是本节课不足之处。

倒数的认识教案 篇8

教学目标:

1、知道倒数的意义,会求一个数的倒数。

2、经历倒数的意义这一概念的形式过程

3、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

教学重点:掌握倒数的意义,会求一个数的倒数。

教学难点:0为什么没有倒数

教学过程:

一、口算引入,揭示课题。

师:出示口算题

(评析:上课伊始,让学生进行简单的口算并进行分类,揭示课题,直奔重点,有利于让学生在一节课的最佳时域知晓今天研究的是乘积是1的两个数的关系特点。教师只有确立了以学生为本的概念,充分了解学生的学习起点和学习疑难症结,把握学生跳动的脉博,才能有针对性地下功夫。)

二、自学课本,初步理解倒数的意义。

(评析:教师恰到好处地设置疑问,有利于学生层层深入地思考,同时,老师有时假装糊涂,把聪明留给学生,老师忘了,谁来帮忙,短短的话语满足了学生求知探新的成功欲,这时促进学生有效学习的基本策略。)

三、举例验证,深入探究倒数的意义。

(评析:对于概念的教学,我们老师大多比较轻视,认为让学生读一、二遍记住就达到目的了。其实,这是表面现象,根本不能促使学生数学思维品质的提高。所以,让学生关注基础知识的本身,这是我们数学教师不能丢的根本,也是实现新课程提出的三维目标的关键,重要的是让学生在掌握概念的过程中,学会数学思考,体会解决问题所带来的'成功体验。

四、仔细观察,探究求倒数的方法。

五、综合练习:

(总评:数学的本质是一种沟通与合作,教师创设了与学生围绕倒数

这个知识目标进行民主、平等、和谐、生动的对话交流,在交流中,包含了知识信息和情感态度,行为规范等多方面的有机组合,促进了学生多方面素养的提高。本课教学活动让学生经历了学习数学知识的全过程,着力培养了学生的数学思维。)

一键复制全文保存为WORD