教学内容:人教版六年制小学课本第九册第70-71页。下面是小编辛苦为大家带来的平行四边形的面积优秀教学设计精选9篇,如果对您有一些参考与帮助,请分享给最好的朋友。
【教材分析】
本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。
【教学目标】
知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。
过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。
情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。
【学情分析】
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
【教学重点】
掌握平行四边形面积计算公式。
【教学难点】
平行四边形面积计算公式的推导过程。
【教具】
两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。
【教学过程】
一、创设情境,引入课题。
1、游戏:小小魔术师。教师出示不规则图形。
(1)师:你能直接计算出这个图形的面积吗?
(2)师:你能计算出这个图形的面积吗?说一说用什么方法?
(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
(设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的'学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的`基础。)
二、激趣引思,导入新课。
师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?
生1:我想知道要花多少钱才可以做成。
生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!
生3:我想知道这块胶合板的面积有多大。
师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究“平行四边形的面积”。(板书课题:平行四边行的面积)
(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)
三、动手操作,探究发现。
1、用数方格的方法启发学生猜想平行四边形面积的计算方法。
师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。
教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。
(1)这个平行四边形的面积是多少平方厘米?
(2)它的底是多少厘米?
(3)它的高是多少厘米?
(4)这个平行四边形的面积跟它的高与底有什么关系?
(5)请同学们猜一猜:怎样计算平行四边形的面积?
2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。
我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?
生:不方便。
师:既然不方便,我们能不能用更方便的方法来解决呢?
小组交流,学生讨论,发表意见。
生:用剪和拼的方法。
师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)
师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?
师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)
师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?
(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)
师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。
师:再请一个同学展示一下,他的剪法有什么不一样吗?
(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)
师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?
小组讨论:
⑴ 原来平行四边形的面积和拼成的长方形的面积相等吗?
⑵ 原来平行四边形的底与拼成的长方形的长有什么关系?
⑶ 原来平行四边形的高与拼成的长方形的宽有什么关系?
师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长, 宽=高)
师:长方形的面积=长×宽,那么平行四边形的面积怎样求?
生:平行四边形的面积=底×高(板书)
师:同意吗?谁能讲一讲,为什么平行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)
教师小结方法指名让生叙述。
师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。
师:现在我们可以确定当初的猜想谁是正确的?
(设计思路:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)
四、实践应用,巩固提高。
师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)
教师板书:5×4=20(平方米)
出示例1 (同桌讨论,独立完成,最后全班交流。)
教师板书:S=ah=6×4=24(平方米)
师:同学们真会动脑筋,能运用所学知识解决生活中的问题。
(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)
1.现在我们不用数方格的方法,也能知道王林家和张强家地面积的大小了。并完成P71 试一试
2.完成P71练一练1、2
3.选择正确的算式:
求出下图的面积(单位:分米)
A.12×5( ); B.12×10( ); C.10×6( ); D.5×6( )。
教学目标
1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
2、能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。
3、过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。
4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。
难点平行四边形面积公式的推导过程。
教具
1、多媒体计算机及课件;
2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。
教学过程
一、质疑引新:
1、这图形你认识吗?长方形面积公式是怎样的?宽]这又是什么图形?指出平行四边形的底和高?
2、谈话引入:你想知道你所做的平行四边形面积有多大吗?
二、引导探求:
㈠提出问题:
1、用数方格法求平行四边形的面积
⑴谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。
⑵数出方格图中平行四边形的面积。提问:
A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)
B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?
⑶若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?
2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。
3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?
电脑逐步显示:平行四边形的面积=长方形的面积。
平行四边形的底=长方形的长;
平行四边形的高=长方形的宽;
引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!
电脑展示:
(1)底、高、不变,面积不变。
(2)底、高改变,面积变化。
你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?
㈡推导公式:
1、小组合作研究:
长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)
⑴怎样剪拼才能将平行四边形转化成长方形?
⑵转化后的图形与原平行四边形有什么关系?
(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)
2、各小组实验操作,教师巡视指导。
3、各小组交流实验情况:
⑴谁愿意把你的转化方法说给大家听呢?请上台来交流!
⑵有没有不同的剪拼方法?(继续请同学演示)。
⑶电脑演示各种转化方法。
4、小组合作讨论归纳总结规律:
⑴平行四边形剪拼成长方形后,什么变了?什么没变?
⑵剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶剪样成的图形面积怎样计算?
⑷小组上台汇报,指着图形说一次得出:
因为:长方形的面积=长×宽
所以:平行四边形的面积=底×高(同位指着图形说)
7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“。”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
㈢巩固公式:
刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)
㈣应用解决:
下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)
板书:32.6×8.4≈274(平方米)
答:它的面积约是274平方米。
(挑一学生的作业投影评讲)
一、教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
二、教学重点、难点及关键点剖析:
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
三、教具、学具准备:
平行四边形纸片、剪刀及电脑课件、
四、教学过程:
一、创设情境,导入新课
猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽
师:平行四边形的面积怎么算呢?
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)
齐读学习目标:
1、通过操作,能推导出平行四边形的面积计算公式。
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)
小组讨论:
(1)仔细观察、比较表格中的数据,你发现了
(2)猜想:平行四边形的面积=_________________________
三、动手操作,验证猜想
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
A、平行四边形转化成长方形后面积变了吗?为什么?
B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。
(6)交流汇报
板书:长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)
四、当堂检测
1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()
A:8×3B:8×6C:4×6D:4×3
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
五、拓展提升
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1.4cm
2.5cm
通过做此题,你发现了什么?
六、课堂小结
说说本节课,你收获了什么?
七、板书设计:
平行四边形的面积
长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
S=a×h
=ah
=ah
一、情境激趣
1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。
2.师:为了纪念这个有意义的时刻,我们学校的。小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!
3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。
提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?
4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)
【教学内容】:
青岛版实验教材小学数学五年级上册第76页内容。
【教学目标】:
1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。
2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。
3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。
【教学准备】:
学生:方格图、平行四边形纸片、直尺、剪刀、三角尺
教师:课件、投影仪
【教学过程】:
一、谈话引入,提出问题
师:同学们,你们喜欢吃水产品吗?比如:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)仔细观察图中的信息,你能提出什么数学问题?
(1:虾池的面积是多少? 2:虾池是什么形状的?……)
师:虾池是什么形状的?(平行四边形)
师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)
二、合作探索,解决问题
1、猜想
师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)
师:希不希望通过自己的探究找到这个公式?
师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。
(学生独立思考)。
师:谁来说?
(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)
师:谁有不同想法?
(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)
师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)
师:对!我们要逐个进行验证,看看正确的公式究竟是什么。
为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)
1.小组同学先讨论验证的方法,再动手验证。
2.小组成员要团结合作,合理分工。
3.每组推选1名代表进行汇报,其他组员可以补充
4.使用学具时注意安全,用完后装入信封。
2、验证“底×邻边”
师:先来验证“底×邻边”这个猜想对不对。
比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。
(学生合作,教师巡视)
3、交流
师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?
(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以 “底×邻边” 的猜想是错误的。)
师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)
师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。
4、验证“底×高”
(学生活动,教师参与)
5、交流
师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?
(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。
师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)
(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)
师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?
师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)
师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。
师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)
师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?
(平行四边形没有“长”和“宽”。)
师:说的真好,我们可不能混淆了。
三.应用公式,巩固训练
师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)
师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)
师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))
师:听说你们很顺利的获取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信心迎接挑战吗?
(出示课件:四个挑战)
1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?
为什么?(单位:厘米 图略)
2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)
3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?
4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?
(图略)
师:真不错,挑战成功。
四.收获平台,课外延伸
师:不知不觉中就要下课了。想一想,这节课你有哪些收获?
(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)
师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?
(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)
1.练习十五第1题,让学生独立完成后反馈答案。
2.你会计算下面平行四边形的面积吗?
3.你能想办法求出下面平行四边形的面积吗?
4.练习十五第3题。
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
理解公式并正确计算平行四边形的面积。
教学难点:
理解平行四边形面积公式的推导过程。
教学方法:
动手操作、小组讨论、启发、演示等教学方法。
教学准备:
1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。
2、课外延伸思考题。
3、平行四边形转化为长方形的课件。
教学过程
一、创设情境,导入新课:
1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?
2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?
师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)
二、合作交流,探究新知
1、数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
学生讨论,鼓励学生大胆发表意见。
3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。
学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)
教师用课件演示剪——平移——拼的过程。(多种方法)
4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。可以出示讨论题。
(1)拼出的长方形和原来的平行四边形比,面积变了没有?
(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。
同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。
板书:
平行四边形面积= 底 × 高。
5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。
平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。
板书:S=a×h=ah=ah
6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
三、分层运用新知,逐步理解内化
1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)
3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)
4、 求下列平行四边形的面积 。
(2)判断对错:
师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)
(3) 观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)
生读题。
师:等底等高的平行四边形面积一定相等。
3. 思考题:你有几种方法求下面图形的面积?
四、总结全课,深化认识
通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?
今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。
(一)设计理念:
《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。教师在课堂教学中应尝试采取多种手段引导每一个学生积极主动地参与学习过程。
“问题是数学的心脏。”、“问题是一切思维的起点。”在教师创设的情境中,学生利用原有的知识和技能无法直接解决问题,就会产生认知上的矛盾、内在的需要和学习的驱动力,从而积极、主动地去学习。
数学学习活动是一个以学生已有知识和经验为基础的主动建构过程,学习者能否主动建构形成良好的认知结构,取决于原有的认知结构里是否具有清晰、可同化新知识的观念,以及这些观念的稳定情况,所以教师不仅应从整体上把握教材知识结构,而且应从纵向考虑新旧知识是如何沟通联系的。
每个人都以自己的方式理解事物的某些方面,学习过程要增进学习者之间的合作,使其看到那些与自己不同的观点,完善对事物的理解,教师是意义建构的帮助者、促进者,而不是知识的提供者和灌输者,应成为学生学习的高级伙伴或合作者。教师应重视师生之间、生生之间的相互作用,通过创设情境和组织学生合作与讨论,使学生认识事物的各个方面,在已有知识和经验的基础上建构新知识。
学生是学习的`主人,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。未来的社会既需要学生具有获取知识的能力,也需要学生具有应用知识的能力,而知识也只有在能够应用时才具有生命力,才是活的知识。