初中数学教学设计(优秀7篇)

作为一名专为他人授业解惑的人民教师,时常需要准备好教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么优秀的教学设计是什么样的呢?本页是敬业的小编帮助大家收集整理的7篇初中数学教学设计的相关文章,欢迎参考,希望对大家有一些参考价值。

初中数学教学设计 篇1

一、内容和内容解析

(一)内容

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

(二)内容解析

现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

二、目标和目标解析

(一)教学目标

1.理解不等式的概念

2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念

4.用数轴来表示简单不等式的解集

(二)目标解析

1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

三、教学问题诊断分析

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

四、教学支持条件分析

利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

五、教学过程设计

(一)动画演示情景激趣

多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

(二)立足实际引出新知

问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?

小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

(三)紧扣问题概念辨析

1.不等式

设问1:什么是不等式?

设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.

2.不等式的解

设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.

老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式

3.不等式的解集

设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.

老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

4.解不等式

设问1:什么是解不等式?由学生回答.

老师强调:解不等式是一个过程.

设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

(四)数形结合,深化认识

问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.

设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

1、什么是不等式?<的解集,也是不等式>50

2、什么是不等式的解?

3、什么是不等式的解集,它与不等式的解有什么区别与联系?

4、用数轴表示不等式的解集要注意哪些方面?

设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

(六)布置作业,课外反馈

教科书第119页第1题,第120页第2,3题.

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

六、目标检测设计

1.填空

下列式子中属于不等式的有___________________________

①x +7>

②x≥ y + 2 = 0

③ 5x + 7

设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

2.用不等式表示

① a与5的和小于7

② a的与b的3倍的和是非负数

③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

数学初中教学设计 篇2

教学设计示例一——公式

教学目标

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式、

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例二——公式

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题、

2、使学生理解公式与代数式的关系、

(二)能力训练点

1、利用数学公式解决实际问题的能力、

2、利用已知的公式推导新公式的能力、

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践、

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美、

二、学法引导

1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2、学生学法:观察分析推导计算

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式、

2、难点:同重点、

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式、

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏、在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题、

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

师生共同分析:

1、根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

2、题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性。

【教法说明】

1、通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。

2、用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。

(出示投影3)

例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

学生讨论:

1、环形是怎样形成的、

2、如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。

评讲时注意:

1、如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。

2、本题实际上是由圆的面积公式推导出环形面积公式。

3、进一步强调解题的规范性

教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。

测试反馈,巩固练习

(出示投影4)

1、计算底,高的三角形面积

2、已知长方形的长是宽的1。6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t

3、已知圆的半径,,求圆的周长C和面积S

4、从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

(1)求A地到B地所用的时间公式。

(2)若千米/时,千米/时,求从A地到B地所用的时间。

学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演、

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展、

师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式、

八、随堂练习

(一)填空

1、圆的半径为R,它的面积________,周长_____________

2、平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________

3、圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________

(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,V是多少?

九、布置作业

(一)必做题课本第___页x、x、x第___页x组x

(二)选做题课本第___页___组x

教学和活动过程: 篇3

〈一〉、提出问题

[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、[学生回答]分组交流、讨论

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答]总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答]完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题1.口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判断:

()①(a-2b)2=a2-2ab+b2()

②(2m+n)2=2m2+4mn+n2()

③(-n-3m)2=n2-6mn+9m2()

④(5a+0.2b)2=25a2+5ab+0.4b2()

⑤(5a-0.2b)2=5a2-5ab+0.04b2()

⑥(-a-2b)2=(a+2b)2()

⑦(2a-4b)2=(4a-2b)2()

⑧(-5m+n)2=(-n+5m)2

3、小试牛刀

①(x+y)2=______________;

②(-y-x)2=_______________;

③(2x+3)2=_____________;

④(3a-2)2=_______________;

⑤(2x+3y)2=____________;

⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;

⑧(a-0.6b)2=_____________.

〈四〉、学生小结

你认为完全平方公式在应用过程中,需要注意那些问题?

(1)公式右边共有3项。

(2)两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、学生自我评价

[小结]通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业]

p34随堂练习

p36习题

初中数学教学教案 篇4

教学目标

知识技能

1.通过观察实验,使学生理解圆的对称性。

2.掌握垂径定理及其推论,理解其证明,并会用它解决有关的证明与计算问题。

过程方法1.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴。

2.经历探索垂径定理及其推论的过程,进一步和理解研究几何图形的各种方法。

情感态度

激发学生观察、探究、发现数学问题的兴趣和欲望。

教学重点

垂径定理及其运用。

教学难点

发现并证明垂径定理

教学过程设计

教学程序及教学内容师生行为设计意图

一、导语:直径是圆中特殊的弦,研究直径是研究圆的重要突破口,这节课我们就从对直径的研究开始来研究圆的性质。

二、探究新知

(一)圆的对称性

沿着圆的任意一条直径所在直线对折,重复做几次,看看你能发现什么结论?

得到:把圆沿着它的任意一条直径所在直线对折,直径两旁的两个半圆就会重合在一起,因此,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

(二)垂径定理

完成课本思考

分析:1.如何说明图24.1-7是轴对称图形?

2.你能用不同方法说明图中的线段相等,弧相等吗?

垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

即:直径CD垂直于弦AB则CD平分弦AB,并且平分弦AB所对的两条弧。

推理验证:可以连结OA、OB,证其与AE、BE构成的两个全等三角形,进一步得到不同的等量关系。

分析:垂径定理是由哪几个已知条件得到哪几条结论?

即一条直线若满足过圆心、垂直于弦、则可以推出平分弦、平分弦所对的优弧,平分弦所对的劣弧。

垂径定理推论

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

思考:1.这条推论是由哪几个已知条件得到哪几条结论?

2.为什么要求“弦不是直径”?否则会出现什么情况?

垂径定理的进一步推广

思考:类似推论的结论还有吗?若有,有几个?分别用语言叙述出来。

归纳:只要已知一条直线满足“垂直于弦、过圆心、平分弦、平分弦所对的优弧,平分弦所对的劣弧。”中的两个条件,就可以得到另外三个结论。

(三)、垂径定理、推论的应用

完成课本赵州桥问题

分析:1.根据桥的实物图画出的几何图形应是怎样的?

2.结合所画图形思考:圆的半径r、弦心距d、弦长a,弓形高h有怎样的数量关系?

3.在圆中解决有关弦的问题时,常常需要作垂直于弦的直径,作为辅助线,这样就可以把垂径定理和勾股定理结合起来,得到圆的半径r、弦心距d、弦长a的一半之间的关系式:

三、课堂训练

完成课本88页练习

补充:

1.如图,一条公路的转弯处是一段圆弧,点O是圆心,其中CD=600m,E为圆O上一点,OE⊥CD,垂足为F,EF=90m,求这段弯路的半径。

2.有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由。(当水面距拱顶3米以内时需要采取紧急措施)

四、小结归纳

1. 垂径定理和推论及它们的应用

2. 垂径定理和勾股定理相结合,将圆的问题转化为直角三角形问题。

3.圆中常作辅助线:半径、过圆心的弦的垂线段

五、作业设计

作业:课本94页 1,95页 9,12

补充:已知:在半径为5?的⊙O中,两条平行弦AB,CD分别长8?,6?.求两条平行弦间的距离。教师从直径引出课题,引起学生思考

学生用纸剪一个圆,按教师要求操作,观察,思考,交流,尝试发现结论。

学生观察图形,结合圆的对称性和相关知识进行思考,尝试得出垂径定理,并从不同角度加以解释。再进行严格的几何证明。

师生分析,进一步理解定理,析出定理的题设和结论。

教师引导学生类比定理独立用类似的方法进行探究,得到推论

学生根据问题进行思考,更好的理解定理和推论,并弄明白它们的区别与联系

学生审题,尝试自己画图,理清题中的数量关系,并思考解决方法,由本节课知识想到作辅助线办法,

教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,方法,规律。

引导学生分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.

让学生尝试归纳,,发言,体会,反思,教师点评汇总

通过学生亲自动手操作发现圆的对称性,为后续探究打下基础

通过该问题引起学生思考,进行探究,发现垂径定理,初步感知培养学生的分析能力,解题能力。

为继续探究其推论奠定基础

培养学生解决问题的意识和能力

全面的理解和掌握垂径定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识。

体会转化思想,化未知为已知,从而解决本题,同时把握一类题型的解题方法,作辅助线方法。

运用所学知识进行应用,巩固知识,形成做题技巧

让学生通过练习进一步理解,培养学生的应用意识和能力

归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯

巩固深化提高

板 书 设 计

课题

垂径定理垂径定理的进一步推广

赵州桥问题归纳

初中数学设计教案 篇5

一 、教学目标

(一)基础知识目标:

1。理解方程的概念,掌握如何判断方程。

2。理解用字母表示数的好处。

(二)能力目标

体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

(三)情感目标

增强用数学的意识,激发学习数学的热情。

二、教学重点

知道什么是方程、一元一次方程,找相等关系列方程。

三、教学难点

如何找相等关系列方程

四、教学过程

(一)创设情景,引入新课

由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题。

(二)提出问题

章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?

你会用算术方法解决这个实际问题么?不妨试一下。

如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

根据题意画出示意图。

由图可以用含x的式子表示关于路程的数量,

王家庄距青山 千米,王家庄距秀水 千米,

由时间表可以得出关于路程的数量,

从王家庄到青山行车 小时,王家庄到秀水 小时,

汽车匀速行驶,各路段车速相等,于是列出方程:

= (1)

各表示的意义是什么?

以后我们将学习如何解出x,从而得到结果。

例1 某数的`3倍减2等于某数与4的和,求某数。

例2 环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?

五、课堂小结

用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。

六、作业布置

习题3。1 第1,2两题

初中数学教学设计 篇6

课题

正比例函数

一 教学目标

1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力

二 教学重点

理解正比例函数的概念

三 教学难点

利用正比例函数解决生活实际问题

四 教学过程

【提出问题】

《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。

(1) 阿甘大约平均每天跑步多少千米?

(2) 阿甘的行程y(km)与时间x(天)之间有什么关系?

(3) 阿甘一个月(30天)的行程是多少千米?

【生】 列算式回答 【师】 点评总结

2.写出下列变量间的函数表达式

(1) 正方形的周长l和半径r之间的关系

【进一步抽象问题让学生思考】

(2) 大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?

(3) 下列函数关系式有什么共同点?(小组合作)

【分析共同点和不同点,找出规律】 (1) y=200x

(2) l=2∏r (3) m=7.8V 【生回答,师点评】 【引入新课】

1.正比例函数的概念:

一般地,形如y=kx (k≠0)的函数,叫做正比例函数,其中k叫做比例系数。【板书概念,引导学生分析正比例函数的定义】

2 【例题讲解】

例1 在同一坐标系里,画出下列函数的图像: y=0.5x y=x y=3x 解: 【略】

【掌握函数图像的画法:列表,描点,连线】 3.练习

(1)已知正比例函数y=kx.当 x=3 时 y=6 。求 k的值

(2) 一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的? 当销售金额为360元时,则售出了多少本这种笔记本?

四 小结

五 课外作业

【反思】

由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。

初中数学设计教案 篇7

提公因式法(二)

总体说明

本节是因式分解的第2小节,占两个课时,这是第二课时,它主要让学生经历提取公因式从简单到复杂的过程,进一步培养学生的观察能力,体会数学的类比推理能力,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系.

一、学生知识状况分析

学生的技能基础:上一节课,学生学习了提取单项式公因式的基本方法,这为今天的深入学习提供了必要的基础.

学生活动经验基础:学生对于本节课采用的观察、对比、讨论等方法非常熟悉,他们有较好的活动经验.

二、教学 任务分析

学生在初步感知提取公 因式的魅力之后,并对数学的逆向思维能力和类比思想有了简单的认识,本课时让学生体会如何将这些简单的知识和能力进一步升华,使学生逐步从提取的单项式公因式过渡到提取的多项式公因式,因此,本课时的教学目标是:

知识与技能:

(1)使学生经历从简单到复杂的螺旋式上升的认识过程.

(2)会用提取公因式法进行因式分解.

数学能力:

(1)培养学生的直 觉思维,渗透化归的思想方法→←,培养学生的观察能力.

(2)从提取的公因式是一个单项式过渡到提取的公因式是多项式,进一步发展学生的类比思想.

情感与态度:

通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.

三、教学过程分 析

本节课设计了七个教学环节:练一练——想一想——做一做——试一试——议一议——反馈练习——学生反思.

第一环节 练一练

活动内容:把下列各式因式分解:

(1)am+an (2)a2b–5ab

(3)m2n+mn2–mn (4)–2x2y+4xy2–2xy

活动目的:回顾上一节课提取公因式的基本方法与步骤,为学生能从容地把提取的公因式从单项式过渡到多项式提供必要的基础.

注意事项:切忌采用死记硬背的方法让学生背诵提取公因式的基本方法与步骤,最好用例题的形式让学生回忆起提取公因式的方法与步骤,让学生真正理解是第一位的.

第二环节 想一想

活动内容:因式分解:a(x–3)+2 b(x–3)

活动目的:引导学生通过类比将提取单项式公因式的方法与步骤推广应用于提取的多项式公因式.

由于题中很显明地表明 ,多项式中的两项都存在着(x–3),通过观察,学生较容易找到公因式是(x–3),并能顺利地进行因式分解.

第三环节 做一做

活动内容:在下列各式等号右边的括号前插入“+”或“–”号,使等式成立:

(1)2–a= (a–2)

(2)y–x= (x–y)

(3)b+a= (a+b)

(4)(b–a)2= (a–b)2

(5)–m–n= (m+n)

(6)–s2+t2= (s2–t2)

活动目的:培养学生的观察能力,为解决学生在因式分解中感到比较棘手的符号问题提供知识准备.

注意事项:(1)首先注意分清前后两个多项式的底数部分是相等关系还是互为相反数的关系;

(2)当前后两个多项式的底数相等时,则只要在第二个式子前添上“+”;

(3)当前后两个多项式的底数部分是互为相反 数时,如果指数是奇数,则在 第二个式子前添上“–”;如果指数是偶数,则在第二个式子前添上“+”.

第四环节 试一试

活动内容:

将下列各式因式分解:

(1)a(x–y)+b(y–x) (2)3(m–n)3–6(n–m)2

活动目的:进一步引导学生采用类比的方法由提取的公因式是单项式类比出提取的公因式是多项式的方法与步骤.

(1)观察多项式中括号内不同符号的多项式部分,并把它们转换成符号相同的多项式;

(2)再把相同的多项式作为公因式提取出来.

第五环节 反馈练习

活动内容:

1、 填一填:

(1)3+a= (a+3)

(2)1–x= (x–1)

(3)(m–n)2= (n–m)2

(4)–m2+2n2= (m2–2n2)

2、把下 列各式因式分解:

(1)x(a+b)+y(a+b) (2)3 a(x–y)–(x–y)

(3)6(p+q)2–12(q+p) (4)a(m–2)+b(2–m)

(5)2(y–x)2+3(x–y) (6)mn(m–n)–m(n–m)2

活动目的:通过学生的反馈练习,使教师能全面了解学生对符号的转换的理解是否到位,提取公因式的。方法与步骤是否掌握,以便教师能及时地进行查缺补漏.

注意事项:由于新教材删除了添括号一节的教学,学生对于第1题第(4)小题的解答有一定的困难,因而,需要认真比较这两个多项式符号上的异同,确定它们是互为相反数还是相等关系.

第六环节 议一议

活动内容:把(a+b-c)(a-b+c)+(b-a+c)(b-a-c)分解因式.

活动目的:通过学生的讨论,当提取的公因式由两项过渡到三项时,应该采用何种对策,从而进一步提高学生的观察能力与思维能力.

注意事项:通过讨论,学生逐步意识到如果采用提取公因式的方法,必须先把所有括号内的多项式中字母a前面的符号都化为正号,再进行观察比较可以找出公因式(a-b+c).

第七环节 学生反思

活动内容:从今天的课程中,你学到了哪些知识? 掌握了哪些方法?

活动目的:通过学生的回顾与反思,强化学生对如果提取的公因式是多项式应该采取的方法,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比数学思想的理解.

注意事项:学生经历了一个从简单到复杂、提取的公因式从单项式——两项式——三项式的螺旋式上升的认识过程,对确定公 因式的方法及提公因式法的步骤有了进一步的理解,更清楚地了解提公因式法与单项式乘多项式的互逆关系,了解类比等数学思想方法.

巩固练习:课本第52页习题2.3第1,2题.

思考题:课本第53页习题2.3第3题(给学有余力的同学做).

四、教学反思

对学生数学能力及数学思想方法的培养在初中数学教材中尽管没有专门章节进行训练,但始终渗透在整个初中数学的教学过程中.由于一些数学问题的解决思路常常是相通的,类比思想可以教会学生由此及彼,灵活应用所学知识,它是初中数学一个重要的数学思想.

运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由整式的 乘法的逆运算到提取公因式的概念,由提取的公因式是单项式到提取的公因式是多项式时的分解方法,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,没有斧凿的痕迹.

教学中那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略深层知识的真谛.因此数学思想的教学应与整个表层知识的讲授融为一体.

一键复制全文保存为WORD