作为一位杰出的教职工,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么问题来了,教案应该怎么写?以下是小编帮助大家收集的六年级数学下册教案【最新9篇】,希望能够帮助到大家。
教学内容:教材第68页例2,练习十一第2题。
教学目标
综合运用统计知识学会从折线统计图中准确提取统计信息,并作出正确的判断和简单的预测。
理解折线统计图中各个数据的具体含义,培养学生仔细观察的习惯。
教学重点、难点:从折线统计图中获信息,并能作出决策。
教学过程
一、引入:回忆折线统计图的特点。
二、探究交流、总结规律
1.小组探讨、交流。
出示教科书第68页两幅折线统计图,提问:根据这两幅统计图,你们了解到哪些信息?根据提出的'问题,让学生在小组内交流、讨论,谈感受。
学生可能会谈到:
A和B两人绘制的是同一个公司员工的月薪统计图,为什么看起来不一样呢?第一幅图看起来工资增长很快,第二幅图看起来工资增长较慢。
引导释疑。
在学生讨论交流的基础上,教师提问:请大家仔细观察,两幅图看起来虽然不同,但它们所描述的统计数据却是完全一致的,之所以两图不同,原因在于绘图时采用的单位不同:左图1格代表50元,右图2代表100元。
小结。
引导学生认识到:在利用统计图进行比较和判断时,一定要注意统一标准,才不致发生误会。
三、巩固 练习
1.完成教科书第69页练习十一2.
2.补充练习。
四、总结概括
学习了这节课,你知道在利用统计图作分析判断时应注意哪些问题吗?
2.谈你的收获。
(本课注意事项:从折线统计图中准确提取统计信息时,特别要注意标准是否统一,以免影响到正确的判断和预测。)
教学内容
:第2~4页例1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的`现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
教学内容:
课本第99页例9和“练一练”,练习十六第7-10题。
教学目标:
懂得商业打折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同,并能正确地解答这类应用题。
教学重点:
按折扣进行计算。
教学难点:
对折扣的理解,并正确列出算式。
课前准备:
课件
教学过程:
一、创设情境,引入新课
春节假期是人们旅游和购物的好时机,许多商家都看准这一机会,搞了许多促销活动。课前我让同学们去了解一些商家的促销手段,有谁来向大家介绍一下你了解到的信息。
刚才很多同学都说出了一个新的词:打“折”。同学们所说的“打八折、打五折、打七六折、买一赠一、买四赠一”等都是商家的一种促销手段——打“折”。
二、实践感知,探究新知
1、提问:看到“打折”两个字,你会想到什么?
学生全班交流。
小结:工厂和商店有时要把商品减价,按原价的百分之几出售。这种减价出售通常叫做打“折”出售。
出示:华联超市的毛衣打“六折”出售。
提问:这句话是什么意思?那如果打“五折”是什么意思?打“八折”呢?
小结:“几折”就是十分之几,也就是百分之几十。
提问:一件衬衫打“八五折”出售是什么意思?打“七六折”呢?
质疑:刚才很多同学课前了解到的的信息中都有打“折”一词,现在请你说说你了解到的信息是什么意思?
学生交流课前搜集到的有关打折信息的意思。
提问:说一说下面每种商品打几折出售。
①一辆汽车按原价的90%出售。
②一座楼房按原价的96%出售。
③一只旧手表按新手表价格的80%出售。
2、教学例9。
学生自己读题。
出示例9的场景图。让学生说说从图中获取到哪些信息。
提问:你知道“所有图书一律打八折销售”是什么意思吗?
提问“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?
学生独立尝试。
全班交流算式和思考过程
解:设《趣味数学》的原价是ⅹ元。
ⅹ×80%=12
ⅹ=12÷0.8
ⅹ=15
答:《趣味数学》的原价是15元。
3、引导检验,沟通联系。
启发:算出的结果是不是正确?你会不会对这个结果进行检验?
先让学生独立进行检验,再交流交验方法。
启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。
4、指导完成“练一练”。
先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?
三、巩固练习
1、做练习十六第7题。
指名口答。
2、做练习十六第8题。
让学生独立解答,再对学生解答的情况适当加以点评。
四、课堂总结
提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?
五、布置作业
练习十六第9、10题。
教学目标:
1、知识目标使学生牢固地掌握数的整除有关概念,明确概念间的联系与区别。
2、能力目标结合知识的学习培养学生分析、判断推理、概括、归纳等能力。
3、情感目标使学生养成合作学习和勇于探索的良好品质。
教学重点:
明确概念间的联系与区别。
教学难点:
在整理中构建数的整除的知识网络。
教学过程:
一、结合情境,搜集概念。
师:今天一共有多少位同学来这里和老师一起学习?
生:40位同学。
师:40位同学又分5个学习小组,哪位同学能用数的整除的知识说说40与5的关系?
生:40能被5整除。
生:5是40的约数。
生:40和5的最小公位数是40,最大公约数是5。
师:刚才大家说的很好,说到了整除、倍数、最小公倍数、最大公约数,同学们再想一想,在数的整除里,除了这几个概念外,我们还学习了哪些知识呢?
生:整除能被2、3、5整除的特征,倍数、公倍数、最小公倍数、约数、公约数、最大公约数、质数、合数、质因数、分解质因数、变质数、奇数、偶数。
二、叙述概念意义,梳理知识网络。
(1)学生在小组内通过相叙述,质疑问难等方式回忆概念的意义。
(2)学习复习完后各组互派代表相查概念的掌握情况,并向老师汇报抽查结果。
2、梳理知识网络。
(1)小组活动。
师:从同学们反馈情况来看,各小组这些复习概念较好,但数的整除里知识之间存在什么联系和区别呢?请同学们动手整理一下。
(2)对比交流。
抽一小组在黑板上整理,然后各小组表示。
师:通过展示,你们认为哪种观点有道理呢?
各小组进行了充分的讨论后,都说出了道理。
下面看到老师这里也有一个网络图。
师:通过网络图更清楚地知道,在整除的前提下产生了一对概念倍数、约数、倍数下面又产生了公倍数,最小公倍数的。概念,约数下面又产生了公约数,最大公约数的概念;从分析自然数的个数又引入了质数合数的概念;能被2、3、5整除的数一定是2、3、5的倍数,从能被2整除的这个角度,出现了奇数偶数概念。公约数只有1的两个数叫互质数,所以互质数与公约数有联系。
三、巩固应用,拓展提高
在56□的□里填上一个数字,使它能被3整除,又能被2整除。
2、填空。
(1)在1~20中是偶数的有()是奇数的有(),是质数的有(),合数的有()
(2)如果a、b两数互质,那么它们的最大公约数是()最小公倍数是()。
如果a是b的倍数,那么它们的最大公约数是()最小公倍数是()。
(3)18和24的最大公约数是(),最小公倍数是()。
四、全课总结,交流收获。
1、今天这节课我们复习了哪些概念?
2、这节课你最感兴趣的是什么?
五、布置作业。
教学内容:
北京市义务教育课程改革试验教材第二册88页例题(第一课时)
教学目的:
1.知识与技能:使学生掌握用竖式计算连加、连减的方法。
2.过程与方法:进一步巩固两位数加、减两位数,提高学生的计算能力。
3.情感、态度与价值观:⑴培养大家勤于动手动脑的良好习惯。⑵引导大家热爱生活,关注身边的每个事物。
教学重点:
使学生掌握用竖式计算连加、连减的方法。
教学难点:
使学生掌握两个竖式连写的方法。
教学过程:
一、铺垫
1.口算下面各题(并说一说计算顺序)
8+4+313-4-562-209+5+716-8-458-30
2.笔算下面各题(并说一说)
28+34
52-20
二、导入新课,学习新知。
我对大家刚才的表现非常满意,我国运动员们在2004年奥运会上获得奖牌的情况让全国人民也非常满意,你们想知道他们得奖的情况吗?
1.出示表格
金牌银牌铜牌
321714
2.根据表格编一道两步试题。
3.指名列式。32+17+14
4.小组内讨论该怎样计算?
5.说一说你是怎样计算的?指名说师板书。
32+17+14=63
32
+17
49
+14
63
师:这几位同学真聪明,说出自己的方法,你们喜欢用这种方法?好!现在你们就用这种方法来比试一下,看谁做的又快又对!
6.完成
35+26+24
师:大家看一下,我们刚才在计算时用了几个竖式?谁能只用一个竖式就能算出来呢?
你是怎样想的?师板书
35+26+24=85
35
+26
61
+24
85
师:真棒!现有我们把原来的两个竖式合成了一个竖式,比原来简便多了,这就叫“简便写法”。
好!同学们真是太聪明了,连简便写法都能自己想出来。看来下面的这道题也难不住大家了。不过也说不定,你们中间会有个“小迷糊”,看看谁愿意当小迷糊!
7.试一试:
(1)对学生提出要求:先叙说题用两个竖式来写,然后再把两个竖式写成竖式的简便写法。
(2)指名说计算过程,教师板书。
62-15-17=30
62
-15
47
-17
30
3.做一做
98-28-35
三、课堂总结
同学们,刚才我们所做的黑板上的这几个题,就是今天我们学习的连加连减,师板书课题。在用竖式计算连加和连减的时候,我们有两种方法,第一种用两个竖式来算,第二种把两个竖式连起来写,叫“简便写法”。
教学内容:
比例
第一课时
教学目标:
1、使学生在具体情境中初步理解图形的放大和缩小,学会利用方格纸把一个简单图形按指定的比放大或缩小。
2、使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用。
3、初步体会图形的相似,进一步发展空间观念。
重点难点:
1、理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比放大或缩小
2、学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似,进一步发展空间观念。
教学过程:
一、导入。
呈现例1图片在黑板上。
提问:把放大前后的两幅画相比,你能发现什么?
根据学生回答的情况,谈话导入:像刚才把一幅长方形画放大后,长方形的长和宽与原来相比,其中变化有什么规律?这就是我们今天要学习的内容。
板书课题:图形的放大和缩小
二、教学例1。
1、认识图形的放大
出示例1中两幅图片长和宽的数据。
提问:两幅图的长有什么关系?宽呢?
组织学生先讨论,启发学生用不同的方法比较出两幅图的长和宽的关系:第二幅图的长是第一幅的2倍,宽也是第一幅的2倍;第一幅图和第二幅图长的比是2:1,宽的比也是2:1,等等。
指出:把图形的每条边放大到原来的2倍,就是把图形按2:1的比放大。
提问:刚才我们在电脑上操作时,把原来的一幅长方形按怎样的比放大了?
2、认识图形的缩小。
谈话:我们可以把一个图形按一定的比放大,也可以把一个图形按一定的比缩小。 提问:如果要把第一幅图按1:2的比缩小,缩小后的长与宽各应是原来的几分之几?
各是多少厘米?
先在小组里说一说,再组织全班交流。
三、教学例21、出示例2,让学生读题
(1)提问:按3:1放大是什么意思?放大后的长、宽各是原来的几倍?各应画几格?
(2)学生画图,再展示、交流。
(3)让学生尝试在方格纸上画出缩小后的长方形,再展示各自画的图形,并交流思考的方法。
重点指导学生说说缩小后的长方形的长和宽应是原来的几分之几,各应画多少格。
2、讨论:把放大和缩小后的图形与原来的图形相比,你有什么发现?
让学生明确:放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)
3、教学试一试
先独立画出按2:1的比放大后的三角形,再让学生说一说自己是怎么画的?
提问:量一量,斜边的长也是原来的2倍吗?你发现什么?
小结:把三角形按2:1的比放大后,各条边的长都是原来的2倍。
四、巩固练习
1、做练一练
让学生按要求在方格纸上画出缩小后的图形,再让学生说一说是怎样画的,缩小后有关边的长度是原来的几分之几,各应画几格?
2、做练习六第1、2题。
第1题要引导学生具体分析相关图形边的长度,并完成填空,再组织交流。
五、全课小结。
什么是图形的放大和缩小。要遵循什么原则?放大和缩小后的图形与原来的图形有什么关系?
六、课堂作业 补充习题28-29页
(一)教学内容包括:四则运算,运算定律,小数的意义与性质,小数的加法和减法,观察物体(二),三角形,图形的运动(二),平均数与条形统计图,数学广角——鸡兔同笼和综合与实践等。
(二)教学目标:
1.理解小数的意义和性质,体会小数在日常生活中的应用,进一步发展数感,掌握小数点位置移动引起小数大小变化的规律,掌握小数的加法和减法。
2.掌握四则混合运算的运算顺序,会进行简单的整数四则混合运算;探索和理解加法和乘法的运算定律,会应用它们进行一些简便运算,进一步提高计算能力。
3.认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。
4.理解平均数,认识复式条形统计图,了解其特点,初步学会根据统计图和数据进行数据变化趋势的分析,进一步体会统计在现实生活中的作用。
5.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
6.让学生经历从不同的位置观察物体的过程,培养学生的空间想象和推理能力。
7.进一步探索轴对称图形的特征和性质,会画一个图形平移后的图形。
8.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
9.养成认真作业、书写整洁的良好习惯。
(三)教学重点:小数的意义与性质、小数的加法和减法、运算定律与简便计算、及三角形是本册教材的重点。
(四)教学难点:图形的运动,三角形是本册的难点。
三、教材的编写特点
1. 改进四则运算的编排,降低学习的难度,促进学生的思维水平的提高。
2.认识小数的教学安排,注重学生对小数意义的理解,发展学生的数感。
3.提供丰富的空间与图形的教学内容,注重实践与探索,促进学生空间观念的发展。
4.加强统计知识的教学,使学生的统计知识和统计观念得到进一步提升。
5.有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的能力。
6.情感、态度、价值观的培养渗透于数学教学中,用数学的魅力和学习的收获激发学生的学习兴趣与内在动机。
第一单元教材分析
(一)教材说明:这一单元是这册书中一个重点单元。本单元主要教学并梳理混合运算的顺序。混合运算前面学生已经学会按从左往右的顺序计算两步式题,并且知道括号的作用,这里主要教学含有两级运算的运算顺序,并对所学的混合运算的顺序进行整理。其主要内容有:整理同级运算的顺序,教学并整理含两级运算的顺序及含有小括号的运算顺序、有关0的运算。
(二)教学目标:
1、进一步掌握含有两级运算的运算顺序,正确计算三步式题。
2、经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。
3、在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
(三)教学重点:熟练掌握四则混合运算顺序加带有括号的混合运算顺序。
(四)教学难点:四则混合运算顺序的学习。
(五)教学建议:
本单元中一个新的亮点就是整理混合运算的顺序是结合解决问题进行的。目标中学生既要掌握运算顺序,又要理解解决问题的基本策略和步骤。从学生的角度看,学生已经有了一定的运算基础,因此建议:
1、以应用题型为经,以运算顺序为纬。视学生情况,各有侧重。
2、加强基础运算,保证计算的正确率。
在本单元的教学中,我们应该尝试给学生提供探索的机会,让学生经历创造的过程,从中体会运算顺序的合理性和小括号的意义。在探索过程中,学生的思维是自主的,学生的选择是开放的,学生的表述也是多样的。
章节名称 四则运算 课 时
课标要求
教学目标 1、理解加减法的意义及各部分之间的关系;理解乘除法的意义及各部分之间的关系。
2、对学习过的四则运算知识进行较为系统的概括和总结。
3、让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法。
内容分析 这一单元是这册书中一个重点单元。本单元主要教学并梳理混合运算的顺序。混合运算前面学生已经学会按从左往右的顺序计算两步式题,并且知道小括号的作用,这里主要教学含有两级运算的运算顺序,并对所学的混合运算的顺序进行整理。其主要内容有:整理同级运算的顺序,教学并整理含两级运算的顺序及含有小括号的运算顺序、有关0的运算。
学情分析 四则运算的知识和技能是小学生学习数学需要掌握的基础知识和基本技能。学生在一到三年级时已经学习了较多关于四则混合运算的知识,在解决现实问题的过程中,能初步理解混合运算的作用,体会运算顺序。在第二学段本册的教学内容中,学生已经具备较丰富的感性经验基础,能够较好的理解比较抽象的运算顺序,符合学生的学习认知规律。
教学重点 熟练掌握四则混合运算顺序加带有括号的混合运算顺序。
教学难点 四则混合运算顺序的学习。
学生课前需要做的准备工作
教学策略
圆的周长计算的实际运用
教学目标:
1.让学生经历已知一个圆的周长求这个圆的直径或半径的过程,体会解题策略的多样性。
2.进一步理解周长、直径、半径之间的关系, 能熟练运用圆周长的公式解决一些实际问题。
3.感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
已知一个圆的周长求这个圆的直径或半径。
教学难点:
理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。
教学准备:
圆形图片。
教学过程:
一、复习旧知,引入新知
提问
1.什么是圆的周长?圆的周长计算公式是什么?
2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?
指名回答,明确计算方法。
3.口答,求下列各圆的面积。
(l)r=2cm r=3cm r=5cm
(2)d=2cm d=3cm d=5cm
4.引入:知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。(板书:圆的周长计算的实际运用)
二、合作交流,探究新知
1.教学例6。
(1)出示例6的情境图,指名读题,并且找出条件和问题。
(2)讨论:如何准确地测算出这个花坛的直径?
(3)交流后,明确:先测量出这个花坛的周长,再利用圆的周长计算公式计算
花坛的直径。
(4)出示测量结果:花坛的周长是251.2米。
(5)学生独立完成。
(6)集体订正,教师板书
方法一:列方程解答。
解:设花坛的直径是x米。
3. 14x=251.2
x=251. 2÷3. 14
x=80
答:花坛的直径是80米。
方法二:算术方法解答。
251. 2÷3. 14 =80(米)
答:花坛的直径是80米。
(7)师:两种方法有什么相同点和不同点?你喜欢什么方法?
2.小结。
(l)提问:已知圆的周长,如何求圆的半径或直径?
(2)学生回答,教师板书
①列方程解答。
②d=C÷ r=C÷ ÷2
三、巩固练习,加深理解
1.完成“练一练”。
(1)学生独立完成。
(2)集体交流。
2.完成练习十四第8题。
(1)借助圆柱形教具演示,帮助学生理解什么是“树干横截面,,。
(2)学生独立思考并计算。
(3)集体交流。
3.完成练习十四第9题。
(1)理解“拱门的高度”的含义。
(2)学生独立计算。
(3)集体订正。
4.完成练习十四第10题。
(1)学生独立思考。
(2)集体交流,明确:可以通过计算来比较,也可以根据周长的计算公式来直接比较。
5.作业:练习十四第6、7、10题。
四、课堂小结
师:通过这节课的学习,你有什么收获?
学生发言,教师点评。
板书设计:
圆的周长计算的实际运用
方法一:列方程解答。
解:设花坛的直径是x米。
3. 14x=251.2
x=251. 2÷3. 14
x=80
答:花坛的直径是80米。
方法二:算术方法解答。
251. 2÷3. 14 =80(米)
答:花坛的直径是80米。
d=C÷ r=C÷ ÷2
教学目的:
1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。
2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养的灵活性。
教学重点:
掌握用转化的策略解决分数问题的方法,增强策略意识。
教学难点:
根据具体问题,确定转化后要实现的目标和转化的具体方法。
教学过程:
一、看谁的联想最多?
出示:男生人数是女生的2/3 看到含有分率的句子,你能想到些什么?
学生可能说:
(1)把女生人数看作“1” ——找单位“1”
(2)男生人数有这样的2份,女生人数有这样的3份。
(3)一共有这样的5份
(4)女生比男生多1份 ——份数
(5)男生人数占全班人数的2/5,女生人数占全班人数的3/5
(6)女生是男生的3/2 ——分数
小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。
二、新授
1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”
2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。
3、学生独立完成,教师巡视指导。
4、指名交流解题思路。
5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?
6、学生独立完成,小组交流。指名交流。
学生可能想到:
(一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”
50÷(3+2)=10(人) 10×3=30(人)
(二)将关键句转化成分数来理解“女生占全班人数的3/5”
50×3/5=30(人)
7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。
8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)
三、巩固练习
1、练一练:学校美术组有35人,是合唱组人数的 5/8 。学校合唱组有多少人?
(1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)
(2)反思:为什么把美术组人数是合唱组的 5/8转化为合唱组的人数是美术组的8/5。
(3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。
板书:问题转化成已知条件的几分之几。
2、练习十四5:
(1)看图填空。
绿彩带
红彩带
绿彩带比红彩带短 2/7 ,红彩带比绿彩带长 ()/() 。
(2)一杯果汁,已经喝了 2/5 ,
喝掉的是剩下的 ()/() ,剩下的是喝掉的 ()/() 。
3、练习十四6
(1)白兔和黑兔共有40只,黑兔的只数是白兔的 3/5 。黑兔有多少只?
黑兔只数占白兔、黑兔总只数的 ()/() 。
(2) 小明看一本故事书,已经看了全书的 3/7 ,还有48页没有看。 小明已经看了多少页?
已经看的页数是没有看的页数的 ()/() 。
4、只列式,不计算。(说说你是怎样转化的)
(1)修一条长30千米的路,已经修的占剩下的 2/3 ,已经修了多少千米?
(2)山羊有120只,比绵羊少 1/6 ,绵羊有多少只?
(3)甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙三数的和是180,甲、乙、丙三个数各是多少?
5、有3堆围棋子,每堆60枚。第一堆的黑子和第二堆的白子同样多,第三堆有 1/3是白子。这三堆棋子一共有白子多少枚?
6、思考题:
有两枝蜡烛。当第一枝燃去4/5 ,第二枝燃去 2/3 时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是( ):( )。
全课小结:今天这节课,我们学习了什么知识?你有哪些收获?
板书设计:
用转化思路解答分数除法应用题
繁 简
用方程解答: 用乘法解答:
解:设女生有x人。
x+2/3 x=35
5/3x=35 35×3/5=21(人)
x=21
答:女生有21人