作为一名专为他人授业解惑的人民教师,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们应该怎么写教案呢?下面是的小编为您带来的五年级数学《三角形的面积》教案(优秀6篇),希望能够给予您一些参考与帮助。
在这堂课中,我根据教学知识结构、特点、教学任务和教学目标,创设了在操作中学,研讨交流中学、探究发现中学等自主学习方法与活动。使学生在拼一拼,摆一摆等实践活动中尝试失败与成功,在研讨交流、聆听、评价中自主学习,和谐发展。本节课中,尽管要解决的问题具有挑战性,探究的过程也有一定的难度,但是由于将解决三角形面积计算(新问题)置于已学图形面积计算(旧知识)这个“背景”之中,学生已有的知识经验被“激活”,因此就能够在磕磕碰碰的探索中主动完成认知的建构,把直角三角形、钝角三角形的面积计算,分别同化到已有的长(正)方形、平行四边形面积计算的知识结构中去。
具体做法如下:
1、 这节课我采用了通过实践操作组织教学,通过大胆放手,让学生在猜、拼、想、议中学习数学,在学生动口、动手、动脑中研究数学,在自主、自由中“发展”数学。
2、培养实践能力:动手操作的过程,是学生手、眼、脑等多种感官协同活动的过程,让学生多种感官参与学习活动,不仅能使学生学得生动活泼,而且对所学知识能理解得更深刻,记忆得更牢固,还有利于发展学生的思维,培养学生的创新精神和实践能力。本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。让学生自己去发现和概括三角形的面积公式,使学生在拼的过程中体验学习的乐趣。为了达到这一目的,先让学生独立操作,分组合作探究,从不同的角度进一步验证得出结论,初步概括出三角形的面积公式,这样采用了拼一拼、操作讨论的方法,找到了三角形如何转换成长方形、正方形、平行四边形的方法,为图形之间的关系架设了桥梁,使知识融会贯通。如果把推导三角形面积公式这一环节照本宣科,学生也能理解,但只是按部就班,谈不上对学生创新精神和实践能力的培养,也就没有了学生的创新和实践。因此,课堂教学必须为学生提供更广阔的创新舞台和时空,顺着学生的思路,让学生在亲身实践的过程中感悟知识。
3、实现合作互动:这节课一系列活动的设计给了学生充足的用眼看、用耳听、用嘴说、用脑想的时间和空间,让学生尽情地表现、发展自己,充分体现了教师指导者、合作者的作用。我提供了多次学生交流的机会,学生们可通过互相帮助、分工合作、互相激励来促进彼此的学习,形成面对面的促进性互动,学生学会了交流,充分发扬了教学民主。
不足之处:
例如:在第二次操作活动中,参与面不够广,部分学生手中拿着两个三角形无从下手,不知如何进行转化,在推导验证过程中也只是被动地接受。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我们需要反思的问题。
【活动目标】
1.认识三角形的特征,知道三角形由3条边,三个角。
2.能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。
3.发展幼儿观察力,空间想象力。
【活动准备】
PPT一份,大三角板一个,长短不同的小棒,雪糕棒等
【活动过程】
一.导入:手指游戏:快乐的小鱼二.学习三角形特征
1、认识三角形
(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。123,请出来。
(PPT出现一根红色的魔法线)提问:它是什么颜色的?
(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线,
(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)
(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。
(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。
2、巩固三角形特征
(1).引导幼儿观察图形,发现三角形的特征。
前几天张老师去旅游。到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的,老师把他拍了下来今天和你们一起来分享(继续看PPT,出示各种各样的三角形物品)A钟表店B食品店C帽子店
(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)
(3)引导幼儿在活动室里找一找三角形的物品
3、老师小结
三角形特征,使幼儿获得的知识完整化。(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的图形都是三角形。
三.复习三角形的特征
提供冰糕棒、小木棒供幼儿拼三角形,巩固认识其三角形。
【活动反思】
小班幼儿的思维是具体形象思维,用变魔术的形式引出开头吸引孩的注意,通过变一边、摸一摸、看一看、找一找、摆一摆等,做了三角形等一系列活动,使每位幼儿在广阔的活动和认识空间在拼拼摆摆的过程中加深对三角形的认识,老师及时的小结使孩子获得知识的完整性。虽然生活中属于三角形的物体少一些,但孩子们能积极参与并观察,找到了好多的环境中的三角形。
“自主探索、合作交流、亲身实践”是《数学课程标准》大力倡导的学习方式,这种学习方式使学生真正成为学习的主人。本节课在设计时改变了教师“讲”知识,学生“用”知识的教学模式,把学习的主动权交给学生,使学生的主体地位落在实处,使学生学的积极、主动。让学生通过动手实践、自主探索,推导出三角形的面积的计算方法。这也是本节课的一个亮点。
在设计教学环节时我注意了学生已有的知识基础和经验背景,按照学生的认知规律组织教学,先复习了平行四边形面积的推导过程,然后让学生去探究三角形的面积计算方法。根据学生已有的知识由旧引新,衔接自如。
充分体现“动手做数学”的理念是这节课的又一亮点。纵观本节课,处处都充满了“做”。建构主义认为:小学生数学学习应该是一个主动构建知识的过程。小学生的数学知识不应该完全被动的吸收课本知识,而应该让他们在丰富生动的思维活动中“做数学”。
本节课通过学生的动手操作、实践探索两个环节,时时处处体现了学生在“做数学”,而教师也真正起到了一个好的组织者、引导者和参与者的作用。使学生在一个轻松、和谐、民主的氛围中探索出了三角形面积的计算方法,获得了成功的体验,增加了学好数学的信心,不仅培养了学生的动手操作能力,还培养了学生解决问题多样化的意识。
纵观这个教学过程,初步体现了提出问题———大胆猜测———反复验证———总结规律———灵活应用这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的过程,由于学生的活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流,不仅能满足学生展示自我的心理需求,同时能使学生从不同的角度去思考问题在合作中互相启发,互相激励,共同发展。
教学内容:
人教版第九册第三单元的《三角形面积的计算》。
教学目的:
(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
教学重点:
掌握三角形面积的计算方法。
教学难点:
理解三角形面积计算公式的推导过程。
教具准备:
用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。
教学过程():
一、复习:
提问:同学们,上节课我们学习了平行四边形面积的计算,谁能说说它的面积计算公式是怎样的?你知道它是通过什么方法推导出来的?
二、导入新课:
你们看,(屏幕出示三个三角形)这些是什么图形?那谁来说说看,哪个三角大?哪个三角小?(到底哪个大,哪个小呢?)要比较它们的大小,必须要知道这三个三角形的面积。那可以用什么方法知道这三个三角形的面积呢?
三、新课:
(一)好,我们就用数方格的方法来求这三个三角形的面积。同样每个方格表示1平方厘米。
下面,就请同学们拿出老师发给你们的方格纸,请你数出这三个三角形的面积,看谁数的又对又快。
小结:通过数方格,我们得到了这三个三角形的面积都是12平方厘米,因此,它们的面积是相等的。
那你们觉得用数方格的方法计算三角形的面积,方便吗?既不方便,又不精确。
像一块大的三角形土地,你能用数方格的方法求出它们的面积吗?那有没有更好的方法呢?(把三角形转化成已经学过的图形来计算面积)你真聪明
师:这才是最科学的方法。今天,我们继续用这种方法研究三角形的面积。板书:三角形面积的计算
师:在研究之前,请同学们仔细观察,张老师把这一张长方形纸这样对折,对折出来的是什么图形?那么,折出的其中一个直角三角形是不是这张长方形纸的一半呢?(老师把它剪开,重叠)我们会发现这2个直角三角形是完全一样的,所以其中一个直角三角形就是这张长方形纸的一半。
(二)下面老师就请同学们拿出给你们准备的2个直角三角形、2个钝角三角形,请分别把它们叠起来,发现什么?(重合)说明了什么?(2个直角三角形完全一样的,2个……)
那就请同学们想一想:用2个完全一样的三角形可以拼成哪些已学过的图形?
1、先用2个完全一样的直角三角形拼拼看?
(长方形、平行四边形、形状不同的三角形)的面积我们会计算吗?我们只会计算长方形和平行四边形的面积,那我们就请拼成平行四边形的同学来演示,说说你是怎样拼的?(同学演示)
我们一起来看一下电脑是怎样清楚地操作的?
2、看清楚了吗?好,我们可以用这种方法想一想,能把2个完全一样的锐角三角形、钝角三角形拼成一个平行四边形吗?开始操作,同桌可互相说说我是怎样拼的?分别请2个同学上台演示。(能吗?)说得真好
3、小结:通过刚才的操作我们把2个完全一样的直角三角形、锐角三角形、钝角三角形,都可以拼成一个什么图形?(平行四边形)谁能把这句话再概括一下,也就是,只要是(2个完全一样的三角形都可以拼成一个平行四边形)齐读回答真好
4、接下来,老师要请同学们仔细观察,你们用2个完全一样的三角形拼成的一个平行四边形。
想一想:1、每个三角形的面积与拼成的平行四边形的面积有什么关系?
2、这个平行四边形的底和高分别与三角形的底和高有什么关系?
开始观察,观察好,同桌互相交流,后回答,屏幕演示。
反馈提问:“为什么要除以2?”
5、翻书P76,填充,齐读,同样我们也可以用字母面积公式
板书:
等底等高
三角形的面积=平行四边形的面积÷2表示什么意思=底×高÷2s=ah÷2
(三)要求三角形的面积必须知道哪几个条件?然后根据(三角形的面积=底×高÷2)计算,注意千万不能忘记÷2,下面就利用三角形面积的计算公式来计算三角形的面积。
1、出示“想一想”:学生读要求,个别回答,校正,一样的举手,不一样的举手。
2、同样我们还可以利用三角形面积计算公式来计算物体表面是三角形的面积。
出示例:求的是什么?我们应根据什么?请同学们做在自备本上。
3、同学们做得真认真,下面老师就要考考同学们有没有掌握今天所学的知识。
请看第1个题目:
1、下面平行四边形的面积是12平方厘米,求出涂黄色部分的面积。
2、判断,说明理由:(请用手势表示)
2个三角形都可以拼成一个平行四边形。
三角形底是6cm,高是3cm,面积是18cm。
三角形底是8分米,高是40cm,面积是16平方分米。
三角形底是9米,高是4米,面积是18米。
从以上练习,你认为我们在计算三角形面积时应该注意些什么?
1、÷2
2、单位统一
3、面积单位
3、选择:
下列哪个三角形是4×3÷2=6平方cm。
单位:厘米
3 3
4 4
小结:我们在做求三角形面积时一定要注意……
一个三角形的底是20厘米,高是2.5分米,它的面积是( )
1、20×2.5÷2
2、20×2.5
3、20×25÷2
小结:你认为在做作业时注意( )
4、求每个三角形的面积(只列式不计算)
底是4.2米,高是2米。
底是3分米,高是20厘米。
高是6米,高比底短2米。
底是12米,高是底的一半。
四、总结:今天,同学们学得非常认真。谁来说说看,这节课,我们一起学习了什么?它的面积计算公式是怎样的?我们在计算它的面积时一定要注意别忘了÷2。
你们知道吗,大约在2000年前,我国数学名著《九章算术》就论述了“圭田术日,半广的乘正从”我们的祖先老早就研究出三角形的面积=底×高÷2你们说,他们是不是很了不起呀。
三角形的土地 一半 底 高
学了这些知识,有没有不懂的问题问老师了?或有什么想法问老师的?
出示思考:
教学内容:
人教版9册 三角形面积公式推导部分
教学目的:
1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。
2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。
3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。
教学过程:
一、阅读质疑。
先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。
1厘米
学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:
(1)数方格怎么求三角形的面积?
(2)不数方格怎么求三角形的面积?有没有一个通用公式?
(3)能把三角形也转化成我们学过的图形求面积吗?
(4)转化成的这些图形跟三角形有什么关系吗?
(析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)
二、点拨激思
1、数方格的问题
学生根据学习材料可以解答用数方格的方法求三角形的面积。
老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。
学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。
嗯,看来数方格求面积是有一定局限性的,今天我们就来研究三角形的面积。
(析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)
2、转化的问题
你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。
师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。
(析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)
三、探索解疑
学生操作,讨论,汇报。
1、转化的图形
学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。
2、解决转化前后图形间的关系
(1)大小的关系
通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S=S÷2。一个三角形转化成的图形跟三角形关系是S =S
(2)底和高的关系
拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?
生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2
师:思路真清晰,为什么÷2,谁还想说。
(学生依次讲拼成的长方形,正方形这两种情况)
(3)公式推导
师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?
生:底×高÷2
师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?
生:S=a×h÷2
(4)推导拓展
师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?
学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。
学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。
生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2
师:这个方法怎样,谁来评价一下。学生评价,太棒了。
生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2
(析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)
归纳小结
出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?
师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。
(析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)
总析:本节课有以下两个特点
1、充分体现了“问题意识的培养”。
老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。
2、重视研究问题的过程。
这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。
一、复习旧知
1、说说长方形、正方形、平行四边形的面积计算公式?
2、计算下面长方形和平行四边形面积。
二、小组合作、探究三角形面积的计算
1、用自制三角形拼成我们学过的图形。(小组代表在展台上展示)
我们发现:两个完全一样的三角形可以拼成()、()、()图形。
思考:每个三角形面积是拼成后的`图形面积的()。
三角形的底和高与拼成后图形有什么关系?
结论:两个完全一样的三角形可以拼成一个与它()的平形四边形。
2、根据实验证明:
两个完全一样的三角形可以拼成一个平行四边形。
这个平行四边形的底等于三角形的()
这个平行四边形的高等于三角形的()
每个三角形的面积是拼成的和它()的平行四边形面积的()。
因为平行四边形的面积=______________
所以三角形的面积=_______________用字母表示____________
从公式中发现要求三角形的面积必须需要知道哪些条件?
三、量出红领巾的底和高算出它的面积。