作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?读书是学习,摘抄是整理,写作是创造,这里是细心的小编给家人们分享的五年级下册数学教案(优秀12篇)。
教学目标:
1、知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2、思考与问题解决:经历观察讨论,操作等学习活动,能对分数的`基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3、情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课:
1、课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2、教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3、学生初步感知了什么变了而什么却没有变的概念。
4、教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一):
1、师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=
2、同学们说说这几道相等吗?(指名回答)。
3、教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知。
1、师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2、学生操作,教师巡视并特别提醒学生注意“平均分”。
3、展示学生的作业。
4、师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5、教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。
6、引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7、课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?
(2)在这个变化中,你们发现了什么规律。
8、教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9、教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10、同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用。
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知。
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1、创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2、手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3、巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
《数的世界》是北师大版五年级第九册第一单元的内容,它是在学生已学过的数的基础上来研究学习的。学生已经知道学过的数有整数(负数)、小数、分数,而本节课探讨的是自然数和整数的关系、一个数的因数和倍数的关系,这里需要强调的是我们研究因数和倍数时,是把0除外的。
通过学生独立思考、小组讨论、全班汇报,学生弄清了自然数和整数的关系,特别是班上的一位男生概括地很准确:所有的自然数都是整数,而所有的整数不一定都是自然数。有同学还提醒大家注意:0既是自然数,又是整数。看来,学生是真正参与到学习中来了,这个知识点是掌握了。
一个数的因数和倍数的关系,主要要求学生能针对具体的乘法算式说一说,谁是谁的因数?谁又是谁的倍数?而具体研究一个数的因数的个数是怎样?最小的因数是几?的因数是几?等问题是在后面专门学习,本课时只要学生知道因数和倍数的关系并自己能举实例说明。但还有一点,书中特别提到是在自然数(非零)范围内研究,学生在判断一道题时,把这个要求忽略了。即:2.1×3=6.3,6.3是3的倍数,3是6.3的因数。学生认为是对的,就是对研究的范围没有弄清,所以这是一个重点,要反复强调。
一、教学目标
通过这个综合应用,让学生进一步体会数学与生活的密 切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,同时通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。
二、编排思想
1、探索最优方案(每个人都不空闲)。
2、发现规律(第n分钟接到电话的人数是前n-1分钟接到电话的学生总数加1(老师),前n分钟接到电话的学生总数是2的n次方减1)。
3、应用规律。
三、教学建议
1.小组合作学习,教师指导,全班汇报交流。
2.提示学生利用画图表的直观形式解决问题。
3.数学模型是一种理想化的理论,要事先设计好具体通知方案(包括每人的通知对象)和流程图。
综合应用 粉刷墙壁
一、教学目标
巩固有关表面积等方面的知识,加强数学知识在实际生活中的应用,而且还可以培养学生收集 、整理 、分析信息的意识和能力。
二、活动步骤
1.明确设计方案需要做的工作。
2.收集数据。
3.整理数据、分析与比较信息。
4.书面呈现粉刷围墙方案。
三、教学建议
1.因本实践活动会涉及实地的测量与调查,教学活动可以采取室内教学和室外教学相结合的形式。
2.室内教学时,教师可引导学生讨论并思考,应该如何整理分析收集到的相关数学信息。
3.展示方案的过程中,教师可以引导学生比一比,看看哪组的方案更合理、更有实际效益,激发学生之间的互评,使学生在交流中理解并接纳别人较好的方法。
4.活动结束之后,也可鼓励学生将自已设计的方案投给学校相关部门,为学校的建设提出一定的建议,使学生体会到数学的价值,体会到自己劳动的价值。
教学目标
一、知识与技能
1.认识正方体,掌握正方体的特征。
2.理解长方体与正方体的联系与区别。
3.发展空间观念。
二、过程与方法
经历观察实物和动手操作等活动,掌握正方体的特征。
三、情感态度与价值观
体验合作探究的乐趣,感受数学与生活的联系,培养学生的创新意识。
教学重点
掌握正方体的特征。
教学难点
理解长方体和正方体的关系。
教学准备
正方体纸盒、长方体和正方体对比教具、多媒体课件。
课时安排
1课时。
教学过程
一、复习导入
1.回忆长方体的特征,请学生用语言进行描述。
2.操作:同桌交流,分别说出长方体的棱有几条?可以分别分成几组?相交于同一个顶点的三条棱叫做什么?
师:今天这节课,我们继续学习一种特殊的立体图形。
二、新课讲授
1.探索正方体的特征。
学生拿出准备好的正方体纸盒,观察并思考。
师:这些都叫什么立体图形?
生:都是正方体。
师:要探究正方体具有什么特征,我们应该从哪方面去思考?
生:从面、棱、顶点这三个方面
2.合作学习。
学生根据手中的正方体学具,小组合作探究。
3.集体交流。
(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。
(2)组:正方体有12条棱,正方体的12条棱的长度相等。
(3)组:正方体有8个顶点。
请学生到讲台前,手指正方体模型,按“面、棱、顶点”的'特征有序地数一数,摸一摸,其他同学观察思考。
师:怎样判断一个图形是不是正方体?
4.教学正方体和长方体的联系与区别:
老师出示一个正方体教具。请学生讨论:它是不是一个长方体?
学生充分讨论,集体交换意见。
学生甲组:这个物体的六个面都是正方形,它不是长方体。
学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们
学生丙组:我们组有不同意见,因为我
教师根据学生的发言进行总结:正方体是特殊的长方体,长方体中包含着正方体,用集合圈表示为:
师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。
三、课堂作业
1.教材第20页的“做一做”。
2.教材第21~22练习五的第4、5、8、9题。
四、课堂小结
今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)
板书设计
正方体
正方体有6个面,都是正方形。有12条棱,每条棱长度相等。有8个顶点。
长方体与正方体的比较
教学反思
正方体的学习是以长方体知识为基础的,在教学时可以将两者联系在一起,便于学生的学习。在教学中,教师要着重注意以下几点:1.可采用观察彩图和实物、动手操作、合作交流等方式,让学生在活动中认识长方体和正方体的特征,发展空间观念,并获得良好的情感体验。2.注重知识的整体性,把长方体和正方体放在同一节中呈现,有利于对学生分析、比较和概括能力的培养。3.联系学生的生活经验。本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律。在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
一、指导思想与理论依据
《课标》明确指出:“数学教学活动中,教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能。”要将这个理念落实在课堂教学中,就要求教师能根据教学的具体内容,选择恰当的学习方式,并巧妙创设学生主动探索的机会,变“接受学习”为“创造学习”,让学生在观察、操作、讨论、交流、归纳、整理、概括的过程中学习新知,充分以学生为主体,逐步培养学生的创新意识,形成初步的探索和解决问题的能力。根据以上思想,本节课的设计我主要从尊重学生已有的知识经验;在观察与操作中去亲身体验知识的形成过程,掌握约分的方法。
二、教学背景分析
1、教学内容、地位及作用。
约分是分数基本性质的一种应用,是学生已经掌握了分数的基本性质和求几个数的最大公因数的基础上进行教学的。同时,约分又是分数四则运算的重要基础。要掌握约分的方法,除了要能很快看出分子、分母最大公因数之外,很重要的一点是能判定约分的结果是不是最简分数。
2、学情分析
在学习约分之前,学生已经学习了了分数的基本性质,大多学生能较快的找出两个数的公因数、最大公因数,同时理解了互质数的概念。这些知识点的掌握为约分方法的。学习提供了认知基础,学习本课应该较为容易。但快速并准确地判断约分的结果是不是最简分数对少部分学生应该有一定的难度。
三、教学方法与教学手段
在教法、学法上,我主要采用了问题启发法、操作探究法、验证发现法、归纳概括法,让学生在动手操作中,发现新知;在合作交流中探究新知;在实践验证中,理解新知,在归纳总结中提升新知。
根据学生原有的认识基础和认知规律,结合“以学生的发展为本”的理念,力求突出以下三点
第一、将教学内容活动化,让学生在操作中学。
第二、采用小组合作学习,让学生在互动中学。
第三、利用原有认知经验,让学生在迁移中学。
使学生获得了探索的乐趣和成功的体验。
四、教学目标
1、理解约分的意义。掌握约分的方法.
2、设置情景与激趣,让学生通过小组合作学习,利用旧知自主探究新知识.
3、培养学生迁移能力,归纳概括的能力及遇到问题积极思考,主动学习的学习习惯.
五、教学重点
理解最简分数及约分的意义和方法,六、教学难点
能很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。
七、教学用具
教师准备:幻灯片,投影
学生准备:分别涂有红色,和绿色的卡片。
八、教学过程
口算复习
1、说出下面分数分子、分母的最大公因数。
3/5 2/8 4/6 5/15
教学目标
掌握假分数化成带分数的方法,能正确地把假分数化成整数或带分数。
教学重难点
学习重点 理解将假分数化成整数或带分数。
学习难点 掌握假分数化成整数或带分数的方法。
教学工具
PPT课件
教学过程
一、复习引入。(6分钟)
1.判断下面各数哪些是真分数,哪些是假分数。
1/7 3/2 4/9 12/47
教师根据学生的分类,把假分数取出来,让学生观察。
2.观察以上假分数,根据分子能否被分母整除这一特征,假分数可以分为几类?根据学生的汇报板书。
3.揭示课题:这节课我们来一起学习把假分数化成整数或带分数。(板书课题:真分数和假分数(2))。
二、探究新知。15分钟)
教学例3。
1.把 3/3 8/4 化成整数。
(1)课件出示例3(1)的圆形图,提问:分别用分数怎样表示?
(2)讨论:如何把 3/3、8/4 化成整数?
2.把 7/3 、6/5 化成带分数。
(1)提问: 7/3 、6/5 的分子不是分母的倍数,这种情况怎样转化?
(2)交流讨论方法。
(3)学生在练习本上试着把 化成带分数。
3.小结:把假分数化成整数或带分数的方法。
学案
1.根据真分数和假分数的意义进行分类,汇报交流。
2.交流假分数的分类情况。
3.明确本节课的学习内容。
1.(1)看课件,回答用3/3 、8/4 表示。
(2)同桌讨论后交流:①根据分数与除法的关系 3/3 =3÷3=1,②根据分数的意义是1,可以想 3/3 里面有3个1/3 。
2.(1)思考老师的提问。
(2)讨论后交流:① 7/3 是 6/3 和 1/3 合成的数,等于2 1/3 。②也可以用7÷3=2……1,商2是带分数的整数部分,余数1是分数部分的分子,分母不变。
(3)学生独立练习,集体订正。
3.师生共同小结。
三、巩固练习。(14分钟)
1.完成教材第54页“做一做”第2题。
2.完成教材第55页第4,第56页第6题。
四、课堂总结。(5分钟)
1.通过本节课的学习,大家学习了假分数化成整数或带分数的方法,希望同学们学以致用,体会学习数学的乐趣。
2.布置课后学习内容。
课后小结
本节课的教学重点是让学生掌握假分数化成整数或带分数的方法。教学主要采用方法算理,概念结合,帮助学生掌握方法。假分数化成整数或带分数的方法,既可以由分数与除法的关系导出,又可以根据分数的意义来解释假分数化成整数或带分数的结果,结合直观图解释。教学时,先让学生探索交流,感受方法的多样性,在交流的过程中,学生优化各自的想法,教师做“画龙点睛”式的引导。
课后习题
1.写出下面的带分数。
八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
1.读出下面的带分数。
3 1/8读作:_____________
70 3/57读作:_____________
2 4/79读作:_____________
2.写出下面的带分数。
八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
答案:8 15 23
3.填一填。
(1)23÷9= ( )/( )
(2)6= 12/( ) =( )/3 = ( )/5 = 24/( )
(3)3 1/2读作( ),它的分数单位是( ),它有( )个这样的分数单位。
4.做同一种零件,张师傅2小时做17个,李师傅3小时做20个,谁做得快些?(化成带分数再比较)
答:张师傅做得快。
板书
真分数和假分数 (2)
假分数化成整数或带分数的方法:
用分子除以分母,
当分子是分母的倍数时,
能化成整数,商就是这个整数;
当分子不是分母的倍数时,能化成带分数,
商是带分数的整数部分,余数是分数部分的分子,分母不变。
教学目标
1、使学生通过生活中的事例,初步体会“植树问题”的思想方法。
2、初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重难点
教学重点: 探索发现“植树问题”的解题规律。 教学难点: 运用“植树问题”的解题思想解决实际问题。
教学过程
一、对比引入,揭示课题
1.出示复习题:在一条6m长的小路的一旁栽树,每隔3 m栽一棵(两端都栽),一共要栽多少棵树?
(1)要求学生说一说自己是怎样解决这个问题的。(指名汇报)
(2)对于两端都栽的植树问题,棵数和间隔数之间有怎样的关系?你能用一个式子表示它们之间的关系吗?(指名回答:棵数=间隔数+1)
2.引入新课。
师:同学们对于上节课的知识掌握得非常好!如果老师把上题改为:在一条6m长的小路的一旁栽树,每隔3 m栽一棵(两端不栽),一共要栽多少棵树?
(1)想一想,这道题与上一道题相比较,有什么变化?
(2)说一说你是怎么理解“两端不栽”的。(学生思考后自由汇报) 师:这节课我们就来研究一下“两端不栽”的植树问题,看一看棵数与间隔数之间有怎样的关系。(板书课题)
设计意图:让学生在熟悉的情境中借助已有的知识经验开展学习,充分调动学生学习的积极性,让学生在不知不觉中进入学习环境。
二、合作探究,发现规律
1.从简单的数据分析,发现两端不栽的规律。
(1)教师引导学生用画线段、摆图形、摆小棒等自己喜欢的方法在小组内研究,并完成下面的统计。
总长 间距(3 m) 间隔数(个) 棵数(两端不栽)
6 m 间距(3 m) 2 1
9 m 间距(3 m) 3 2
12 m 间距(3 m) 4 3
15 m 间距(3 m) 5 4
18 m 间距(3 m) 6 5
.. .. .. ..
(2)填写完后在小组内交流一下,你是用什么方法进行验证的?从中你发现了什么规律?(生自由汇报:两端不栽,棵数比间隔数少1或间隔数比棵数多1) 设计意图:学生是学习的主人,设计丰富的探究活动,采用多样的学习方式,引导学生主动参与探究的过程。教师放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了他们自主探究的意识。教师恰当地向学生渗透“遇到比较复杂的问题先想简单的问题,从简单的问题入手来研究”这一数学思想。
2.自主学习,应用规律解决教材107页例2。
同学们在全长10 米的小路一边植树,每间隔5米栽一棵。(两端不栽)一共要栽多少棵?
(1)相邻两棵树之间的距离是5米。一共要栽多少棵树?
①认真读题,分析题意,说一说自己发现的数学信息。
②独立思考,怎么解决。
③组内交流,确定方法。
(2)交流汇报。
师:请各小组把自己的解决方法介绍给大家,看哪个小组的最合理?
①各小组汇报自己的算法。
方法10÷5=2(棵) 2-1=1(棵)
②课件演示
3.同学们在全长10 米的小路一边植树,每间隔2米栽一棵。(两端不栽)一共要栽多少棵?学生独立完成,课件演示。
为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,每间隔5米栽一棵(两端不栽) ,需要准备多少棵树苗呢?
4.总结规律。 师:从前面的分析中你发现了什么规律?能用一个式子表示出来吗? (根据学生的汇报板书:棵数=间隔数-1)
师总结:在生活中,有这种规律的数学问题叫做两端不栽的植树问题。
设计意图:如果说生活经验是学习的基础,学生间的合作交流是学习的推动力,那么本环节将“发现规律”与“运用规律”结合起来,通过不完全归纳法验证自己找到的规律,渗透了代数思想。
三、联系实际,巩固应用
1.长平村的村道长1000米,在村道一旁安装路灯(两端不安),每隔20米安装一盏,根据这些信息,你能算出这条村道一共安装了多少盏路灯吗? (结合生活实际去分析题意,独立解答)
2.大象馆和猩猩馆相距60米,绿化队要在小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
(应用规律进行解答)
四、全课总结
同学们,今天你有哪些收获?在应用规律解决问题的时候需要注意些什么呢?
五、布置作业
教材110页8题。
脑筋急转弯:把一根木头钜成6段,要钜多少次?
板书设计 植树问题(两端不栽) 棵数=间隔数-1
教学内容:
教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。
教学目标:
1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。
2、通过小组合作,进一步培养学生探索的意识,发展思维能力。
3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。
教学过程:
一、练习与应用
1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。
2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)
二、探索与实践
1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的'值呢?5个连续偶数的和有这样的规律吗?试试看。
2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨
三、与反思
在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。
一、学生情况分析
本班共有学生44人,学生的学习习惯差,作业马虎,字迹潦草,成绩不理想,对自己要求不够严格,后进生面广。针对出现的问题,我想从培养学生良好的学习习惯着手,重点抓学生的作业,在作业中找出每个学生的不足,从而进行补差提优。还要充分挖掘学生的潜力,发挥学生的主体作用,教师的主导作用,把培养学生的创新意识和实践能力渗透在教学的全过程。并进一步加强学习方法的渗透与指导,对学困生实行个别辅导,给予精神上的鼓励与帮助,促使其自觉学习。在书写上进一步提高要求,让学生在认真书写的基础上培养其责任感。
二、教材分析:
1、全册教学要求:
(1)结合具体情境,理解分数乘法的意义,掌握它们的计算法则,并能正确熟练地计算。
(2)掌握长方体和正方体的特征,认识它们展开图的形状,理解掌握长方体和正方体的表面积含义并能正确计算。
(3)理解倒数的意义,掌握分数除法的计算法则,并能熟练地计算。
(4)认识理解物体体积概念,认识常用体积和容积单位(立方米、立方分数、立方厘米、升、毫升),能够掌握这些单位间的进率和换算,掌握长方体和正方体体积计算方法。
(5)掌握分数乘法、除法的数量关系,并能运用这些知识和技能解决简单的数学问题。
(6)理解百分数的意义,能正确熟练地进行小数、分数、百分数的互化,并能正确地解答百分数应用题。
(7)认识条形统计图、折线统计图、扇形统计图的特点,懂得中位数,众数的意义,并能针对具体问题选择使用。
(8)通过实践活动,体验数学与日常生活的密切联系,培养学生的数学应用意识和动手操作能力。
2、教学重点:
(1)理解整数与分数乘法的意义,理解分数乘分数的意义及其计算方法。
(2)理解除数是分数的。除法的意义,分数除法的计算方法。
(3)重点培养分析问题、解决问题的能力。
(4)认识百分数的意义是重点,探索并掌握百分数与分数、小数互化的方法。
(5)了解长方体的几何结构。掌握长方体表面积的计算方法。
(6)认识扇形统计图、条形统计图、折线统计图的特点。
3、教学难点:
(1)整数与分数的乘法的两种意义之间的联系。
(2)把被除数的分数平均分成几份,其中的每一份都是这个被除数的几分之一,也是所求的商。要结合具体情境与操作来理解分数除以整数的意义。
(3)除数是分数的除法的意义,是从被除数中能够分出多少个除数的角度来理解的感受1立方米、1立方厘米以及1升、1毫升的实际意义,能形象地描述这些体积单位实际有多大。
三、提高教学质量措施
在本学期中,继续提高教学质量,我想应从以下几个方面入手加以解决:
1、关注学生非智力因素,通过表扬、激励的机制激发学生的学习热情,努力培养学生良好的行为习惯和学习习惯。开展“争星榜”、发送小喜报的形式,让学生们在竞赛评比和表扬中获得进步。
2、踏踏实实做好教学常规工作,以自己认真负责的工作态度,满腔热情的工作作风,虚心学习各种资料,同时争取家长的配合,共同做好对学生的培养。
四、辅导计划
1、注重因材施教,进一步做好提优补差工作。让学优生和学困生结对,达到手拉手同进步的目的。
2、上课时对学困生多加注意,有针对性地提问,找到他们学习上的难点,予以解决。
3、为了做好抓好两头,保住中间的工作要点,努力设计让优生吃得饱,中等生吃得好,差生吃得消的教学手段。设计提问、设计练习、分析内容注意选择性问题。同时明确练习题的难度的层次性,使学生有的放矢。能在较短的时间里,较好的全面的完成练习题。
4、重视差生的错题订正,不厌其烦的反复地帮助差生完成基础性作业,直至学生真正弄懂为止;对差生的作业保证做到面批面改。
5、加强与家长的配合,帮助潜能生从态度到习惯,从上课到家庭作业的指导形成合力。
五、课时安排:
(一)分数乘法 ( 8 课时)
1.分数的乘法(1) 2课时
2.分数的乘法(2) 2课时
3.分数的乘法(2) 2课时
4、整理和练习(1) 2课时
(二)长方体 (7 课时)
1.长方体的认识和练习(1) 2课时
2.长方体的表面积 3课时
3.整理和练习 2课时
(三)分数除法 (9 课时)
1.倒数 1课时
2、分数除法(1) 1课时
3、分数除法(2) 2课时
4、分数除法(3) 2课时
5.复习 1课时
6、数学生活 1课时
7.折叠 1课时
(四)长方体(二) ( 10 课时)
1.体积与容积(1) 2课时
2.体积单位 2课时
3、长方体的体积、练一练 2课时
4.体积单位的换算 2课时
5、练习四 1课时
6、有趣的测量 1课时
(五)分数混合运算 ( 10课时)
1.分数混合运算(一) 2课时
2.分数混合运算(二) 2课时
3.分数混合运算(三) 2课时
4、数学万花筒 2课时
5.练习五 2课时
(六)百分数 (14课时)
1.百分数的认识 2课时
2.合格率 2课时
3、蛋白质含量 2课时
4、这月我当家 2课时
5、练习
6 、整理与复习 2课时
7、数学与购物 2课时
8、购物策略 1课时
9、包装的学问 1课时
(七)统计与总复习 (10课时)
1.扇形统计图 1课时
2.奥运会 1课时
3、中位数和众数 1课时
4、练习七 2课时
5、了解同学 1课时
6、总复习 3课时
7、本学期你学到了什么、问题银行 1课时
教学目标
1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。 2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。 3.感悟构建数学模型是解决实际问题的重要方法之一。
教学重难点
理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。
教学过程
一、创设情景、生成问题
同学们,我们先来猜个谜语:
一棵小树五个叉,
不长叶子不开花。
能写会算还会花,
***活不说话。
(打一人体器官)
师:看大屏幕的手你从中发现了哪个数字?(生:5)
师:老师还发现了一个数字是4,你知道它指的的什么吗? 生:手指缝。 师:对,是手指缝,在数学上我们把它叫做间隔。板书:间隔
像手指缝一样一共有四个间隔,我们可以把这个间隔的多少叫做间隔数。(板书)
师:请同学们看几组图片,让我们一起认识一下间隔。(课件出示) 出示学生放学路队, 数一数,同学之间的间隔有多少个? 像两个同学之间的距离我们把它叫做间距 师:在生活中哪些地方还有间隔?
师:树与树之间也有间隔,同学们看,这一排排的树多么漂亮,这节棵我们就一起来研究与植树有关的数学问题。板书:植树问题
二、探索交流、解决问题
(一)、同学们知道3月12是什么日子吗?对,是植树节,这一天全国上下都在植树,所以说,植树节时我们都应该植树,为保护环境贡献自己的一份力量。 同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
1、理解信息。 请看题,你获得了哪些信息?
预设:从以下几点理解题意
⑴什么是“一边植树”?
⑵能解释一下“两端要种”吗?(板书:两端要种)追问:与“两边要种”意思一样么? ⑶每隔5米是什么意思? 生:就是两棵树之间的“距离”;
师:两棵树之间的一段距离,我们也可以看作一个间隔。
2、猜想。 师:如果这条路的一边用一条线段来表示,请你口算一共需要多少棵树苗呢? 你们都是怎么想得?听起来,好像都挺有道理,到底哪个答案是对的?大家能用更加直观的方法,来验证自己的答案吗?(画图)
3、化繁为简。
⑴化繁为简 师:(课件演示)请看,“两端要种”,先在开头种上一棵,然后每隔5米种一棵。大 家看,种了多少米了?生:20米 师:一共要种多少米?(20米)照这样一棵一棵,一直画到20米?你有什么感想? 生:...... 师:这样一棵一棵画下去,方法是可以的,但棵数太多了,太麻烦了,那有什么更简单的方法吗? 生:...... 师:好办法,
⑵学生上台板演画图并解答。
师追问:间隔长度是几米?有几段间隔?种了几棵数?间隔段数只有4段,为什么可以种5棵树呢? 师:这样一来,虽然不能直接验证了,但可以从简单例子入手,看看间隔的段数和棵数到底有什么关系。
(3)、举例验证。 师:一个事例还不能说明植树问题的规律,我们还需要别的例子。现在我们来做一个试验。
20米的小路上植树。要求:①每相邻两棵树之间的距离相等,两端要种。②画一画线段图,然后小组轻轻地交流:你研究的间隔长是几米,看看有几段间隔,能种几棵树?
学生分小组合作研究、每小组发填写表格:
通过观察表格中的数据,我们小组发现了:
(4)汇报交流,发现规律。(根据学生的回答,教师完成表格)
师:通过画图我们找出了间隔段数和棵数,现在请你静静地观察表格,你们有什么发现? 生:全长÷间隔长度=间隔段数 间隔段数+1=棵数
师追问:也就是说要求一共要种几棵树,先要求出什么?
(5)游戏:你问我答 那也就是说,如果在一条路上有50个间隔的话,有多少棵树?100个间隔呢?400个间隔呢?n个间隔呢?
反之,如果一条路上载了36棵树,有多少个间隔?85棵树呢?n棵树呢? 师:如果是种50米,两端种,还有这样的规律吗?100米呢?1000米呢? 小结:看来这样的规律是普遍存在于两端都种的植树问题当中的。
4、应用规律,解决原题。
师:现在你能解决这个问题吗?请你试着列出算式。(请学生板演,并说解题思路) 师追问:先求什么?,再求什么?为什么要加1呢?
5、梳理方法。 师:让我们回忆一下,刚才我们遇到两端种的植树问题,是通过怎样的办法,最后成功解决的? 生:......
师小结:当我们遇到一个不能直接解决的难题,出示例1,像100米不好直接画图,怎么办?可以先给出一个猜想,要判断这个猜想对不对,可以 化繁为简用简单的例子验证,并且可以从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。(课件出示)这是一种很重要的数学方法,以后我们还会经常用到它!
三、联系生活,建构模型。
同学们,像这种包含点数和间隔数的例子,不仅植树问题中有,生活中的许多问题也有,谁能举几个这样的例子? 学生自由发言,如果学生说不上来,老师顺势说明:生活中像这样的例子大家不好想,老师倒想出了几个:
1、出示手,我们的手指有五个,手指和手指之间都有间隔,请观察这里有几个手指,几个间隔,他们之间有什么关系?4个手指,有几个间隔?3个手指呢?2个手指呢?
2、小游戏: 任意选2个邻桌学生(喻为小树)起立,手拉手(间隔) 问:有几棵小树几个间隔? 教师加入其中手拉手,问:现在有,(2个间隔,3棵小树) 再加一个学生,现在有。继续往下说
3、学生自由说生活中的例子。
4、反馈后小结:通过刚才的发言,我们知道植树问题普遍地存在于我们的生活当中。手指的个数、楼层数、队伍中的人数,教室的灯和课桌、马路边的路灯、花盆等就相当于我们上面提到的树的棵数,而手指的间隔、梯子的架数、人与人之间的距离等等就相当于间隔数,所以,类似于两端都种的这种植树问题的数量间的关系都可以用“棵数=间隔数+1”这个关系式来表示。
四、应用模型,解决实际问题
1、 P118做一做:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? 让学生独立完成,全班交流时重点让学生说一说“(36-1)”表示什么?
2.在一条全长180米的街道一旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?
3. 广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
活学活用:
现在要在这条1000米长的公路的一侧安放垃圾桶(首尾要安装),每100米安放一个。一共需要多少个垃圾桶?
五、全课总结 师:通过本节课的学习,你学会了什么?
第一单元 图形的变换
第一课时
课题:轴对称教学设计
教学内容:教材第3~4页例1和例2。
教学目标:
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:会利用轴对称的知识画对称图形。
教学准备:幻灯片、课件。
教学过程:
一、复习引入:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
你们还见过哪些轴对称图形?
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1:
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
2.
三、教学画对称图形。
例题2:
(1)引导学生思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
(2)在研究的基础上,让学生用铅笔试画。
(3)通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
1、课内练习一 -----第1、2题。
2、课外作业:
板书设计:
轴对 称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
教学反思:
第二课时
课题:旋转教学设计
教学内容:教材第5~5页例3和例题4。
教学目标:
1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际,初步感知平移和旋转现象 。
2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3、初步渗透变换的数学思想方法。
重点难点:能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学准备:幻灯片、课件。
教学过程:
一、导入
课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
你能根据他们不同的运动变化分分类吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
今天我们就一起来学习“旋转”。板书课题。
二、学习新课
1、生活中的平移。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
2、生活中的旋转:
你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动。
“你见过哪些旋转现象?”先说给同桌听听,然后汇报。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3.学习例题3:
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4.学习例题4:
(1)引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(2)先让学生说一说画图的。步骤,再来画图。
(3)让学生学会先选择几个点,把位置定下来,再来画图。
(4)课件演示画图过程,并帮助学生订正。
5.课内练习:
1.第6页2题。
2.第9页4题、
课后作业:
板书设计: 旋转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
教学反思:
第三课时
课题:欣 赏 设 计教学设计
教学内容:教材第7~11页。
教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养学生的审美情趣。
教学准备:幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、布置作业:
教材第9页第5题。
教学目标
1.使学生理解和掌握两个数的公因数和最大公因数的概念。
2.能了解求两个数的公因数和最大公因数的方法,并能用自己喜欢的方法,找出两个数的最大公因数。
3.通过数学学习活动过程,训练学生思维的有序性和条理性。
教学重难点
最大公因数的求法。
教学工具
ppt课件
教学过程
(一)、复习旧� )谁还能像刚才那位同学举例说一下?
2、理解了什么是一个数的因数,你能找出8的因数有哪些吗?(找同学回答)师:这位同学找全了吗?这位同学做到了既不重复也不遗漏。你能介绍一下你找因数的方法吗?表扬:讲的太清楚了,让我们把掌声送给这位同学。(或:思考一下,怎样找一个数的因数才能做到既不重复也不遗漏。)
哪位同学能用这样的方法找出12的因数呢?
师:看来大家对因数的知识掌握的非常的牢固,今天要学的新知识就和因数有着密切的联系。
(二)、创设情境,引导动手操作
同学们喜欢做游戏吗?下面,我们就来通过做一个小游戏来学习新知识。
1、教师出示7张数字卡片。(1、2、3、4、6、8、12)
(1)请7位同学上台任选一张卡片。记清你卡片上的数字,把你的数字卡放在胸前,面朝大家。
(2)是8的因数的请站在左边,是12的因数的请站在右边。
同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?
这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?
(3)同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?
这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?
(4))师问:你们发现了吗?
(5)师:1、2、4既是4的因数,又是12的因数,用句简单的话说:1,2,4是8和12公有的因数,8和12公有的因数叫做它们的公因数。
(6)师问:同学们观察,8和12的最大的公因数是几呢?(4)
(7)4是8和12最大的公因数,我们就把4叫做它们的最大公因数。
(8)这就是我们这节课要学习的内容《最大公因数》。
(9)板书课题:最大公因数。
(10)除了用上面这种方法表示公因数
我们还可以用前面学过的集合圈的形式表示。
(三)、合作交流、探索方法
1、小组合作:求出18和27的最大公因数。
现在,同学们知道了什么是公因数和最大公因数,那你能试着求出18和27的最大公因数吗?
合作要求:(四人一组)
(1)讨论用什么方法求出两个数的最大公因数。
(2)在答题纸上写出你们组是怎样找这两个数的最大公因数的。
2、汇报交流反馈。
方法一:现分别写出18和27的因数,再圈出公有的因数,从中找出最大公因数数。同学们真是太棒了!其他小组,还有不同的方法吗?
方法二:先找出18的因数:1,2,3,6,9,18.再看看18的因数中有哪些是27的因数,最后看哪个最大。(或者是:先找出27的因数:1,3,9,27;再看看27的因数中有哪些是18的因数,最后看哪个最大。)
方法三: 先写出18 的因数:1 , 2 , 3 , 6 , 9 , 18 。从大到小依次看18 的因数是不是27 的因数,9 是27 的因数,所以9 是18 和27 的最大公因数。
4、这些方法都属于列举法,在解决问题时你可以选择自己喜欢的方法。
5、观察两个数的公因数和它们的最大公因数,你有什么发现?(两个数的公因数也是它们最大公因数的因数。)
(四)、拓展延伸。
刚才,同学们表现得都特别的好,接下来是不是会表现的更出色呢?
老师相信,接下来你们会用自己出色的表现,证明优秀的自己!
1、求出 4和8、16和32的最大公因数 ,思考你发现了什么?
教师对学生的发现概括总结,并课件出示发现:如果较小数是较大数的因数,他们的最大公因数是较小数
2、求出 2和7、8和9的最大公因数,思考你发现了什么?
发现:如果两个数只有公因数1,它们的最大公因数就是1.
3、教师总结:通过刚才的学习我们知道了求最大公因数共有3种情况。
(3种:成倍数关系的;公因数只有1的;一般情况。)
两个数成倍数关系和公因数只有1时可以直接判断出最大公因数。一般情况的采用列举法求出最大公因数。)
(五)、巩固提高。
刚才大家不仅展现了自己的数学才能,还突显了自己的探索能力,那么,我相信老师带来的这些问题同学们就更不在话下了。
1. 填空。
(1) 10 和 15 的公因数有 _____________。
(2) 14 和 49 的公因数有 _____________。
2. 选出正确答案的编号填在横线上。
(1) 9 和 16 的最大公因数是______。
A. 1 B. 3 C. 4 D. 9
(2) 16 和 48 的最大公因数是______。
A. 4 B. 6 C. 8 D. 16
(3) 甲数是乙数的倍数,甲、乙两数的最大公因数是______。
A. 1 B. 甲数 C. 乙数 D. 甲、乙两数的积
3、写出下列各分数分子和分母的最大公因数。
(1) (4) (18) (3)
五、全课总结。
师:同学们,这节课马上要结束了,能说说你们的收获吗?
同学们的收获真多,除了用我们这节课学习的列举法求两个数的最大公因数,老师这里还有两种更简便的方法求最大公因数,给大家分享一下。
一种是:分解质因数求最大公因数的方法,课件演示。
另一种是:短除法
这两种方法我们只是了解一下,在这里就不具体研究了,有兴趣的同学下课后,可以自学教材61页的这部分知识。