高一数学知识点总结归纳【最新11篇】

高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,那么关于高一数学知识点都有哪些呢?

高一数学知识点总结 1

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行——没有公共点;两个平面相交——有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

高一数学知识点总结 2

(一)、映射、函数、反函数

1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

2、对于函数的概念,应注意如下几点:

(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。

3、求函数y=f(x)的反函数的一般步骤:

(1)确定原函数的值域,也就是反函数的定义域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域。

注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。

②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。

(二)、函数的解析式与定义域

1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:

(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:

①分式的'分母不得为零;

②偶次方根的被开方数不小于零;

③对数函数的真数必须大于零;

④指数函数和对数函数的底数必须大于零且不等于1;

⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。

应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。

(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。

已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。

2、求函数的解析式一般有四种情况

(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。

(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。

(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。

(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。

高一数学知识点总结 3

1、知识网络图

复数知识点网络图

2、复数中的难点

(1)复数的向量表示法的运算。对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难。对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。

(2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。

(3)复数的辐角主值的求法。

(4)利用复数的几何意义灵活地解决问题。复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。

3、复数中的重点

(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点。

(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角。复数有代数,向量和三角三种表示法。特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容。

(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质。复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容。

(4)复数集中一元二次方程和二项方程的解法。

高一数学基础知识点要点总结 4

(1)再根据定义判定;

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

(3)利用定理,或借助函数的图象判定。

函数的解析表达式

(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域。

(2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法

函数(小)值

1利用二次函数的性质(配方法)求函数的(小)值

2利用图象求函数的(小)值

3利用函数单调性的判断函数的(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

高一数学知识点总结 5

高一数学集合有关概念

集合的含义

集合的中元素的三个特性:

元素的确定性如:世界上的山

元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_N+整数集Z有理数集Q实数集R

列举法:{a,b,c……}

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2}

语言描述法:例:{不是直角三角形的三角形}

Venn图:

4、集合的分类:

有限集含有有限个元素的集合

无限集含有无限个元素的集合

空集不含任何元素的集合例:{x|x2=—5}

高一数学知识点总结 6

第一章

〖1.1〗集合

【1.1.1】集合的含义与表示

(1)集合的概念

集合中的元素具有确定性、互异性和无序性。

(2)常用数集及其记法N表示自然数集,N_或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集。

(3)集合与元素间的关系

(4)集合的表示法

①自然语言法:用文字叙述的形式来描述集合。

②列举法:把集合中的元素一一列举出来,写在大括号内表示集合。

③描述法:{x|x具有的性质},其中x为集合的代表元素。

④图示法:用数轴或韦恩图来表示集合。

(5)集合的分类

①含有有限个元素的集合叫做有限集。②含有无限个元素的集合叫做无限集。③不含有任何元素的集合叫做空集。

【1.1.2】集合间的基本关系

(6)子集、真子集、集合相等

【1.1.3】集合的基本运算

(8)交集、并集、补集

【补充知识】含绝对值的不等式与一元二次不等式的解法

(1)含绝对值的不等式的解法

(2)一元二次不等式的解法

〖1.2〗函数及其表示

【1.2.1】函数的概念

(1)函数的概念

①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.

②函数的三要素:定义域、值域和对应法则。

③只有定义域相同,且对应法则也相同的两个函数才是同一函数。

(2)区间的概念及表示法

{{7}}$

(3)求函数的定义域时,一般遵循以下原则:

①f(x)是整式时,定义域是全体实数。

②f(x)是分式函数时,定义域是使分母不为零的一切实数。

③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合

④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

⑥零(负)指数幂的底数不能为零。

⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集。

⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出。

⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论。

⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义。

(4)求函数的值域或最值

求函数最值的常用方法和求函数值域的方法基本上是相同的。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同。求函数值域与最值的常用方法:

①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值。

②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值。

④不等式法:利用基本不等式确定函数的值域或最值。

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题。

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值。

⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值。

⑧函数的单调性法。

【1.2.2】函数的表示法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种。

解析法:就是用数学表达式表示两个变量之间的对应关系。列表法:就是列出表格来表示两个变量之间的对应关系。图象法:就是用图象表示两个变量之间的对应关系。

(6)映射的概念

④不等式法:利用基本不等式确定函数的值域或最值。

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题。

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值。

⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值。

⑧函数的单调性法。

【1.2.2】函数的表示法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种。

解析法:就是用数学表达式表示两个变量之间的对应关系。列表法:就是列出表格来表示两个变量之间的对应关系。图象法:就是用图象表示两个变量之间的对应关系。

(6)映射的概念

${{9}}$

〖1.3〗函数的基本性质

【1.3.1】单调性与最大(小)值

(1)函数的单调性

①定义及判定方法

②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数。

{{13}}

【1.3.2】奇偶性

(4)函数的奇偶性

①定义及判定方法

②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.

③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反。

④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数。

〖补充知识〗函数的图象

(1)作图

利用描点法作图:

①确定函数的定义域;

②化解函数解析式;

③讨论函数的性质(奇偶性、单调性);

④画出函数的图象。

利用基本函数图象的变换作图:

要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象。

①平移变换

②伸缩变换

③对称变换

(2)识图

对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系。

(3)用图

函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具。要重视数形结合解题的思想方法。

第二章 基本初等函数(Ⅰ)

〖2.1〗指数函数

【2.1.1】指数与指数幂的运算

(1)根式的概念

{{19}}

{{21}}$

【2.1.2】指数函数及其性质

(4)指数函数

〖2.2〗对数函数

【2.2.1】对数与对数运算

(1)对数的定义

{{24}}

【2.2.2】对数函数及其性质

(5)对数函数

{{27}}

〖2.3〗幂函数

(1)幂函数的定义

一般地,函数y=xa叫做幂函数,其

(2)幂函数的图象

(3)幂函数的性质

①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象。幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象

②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)

③单调性:如果a>0,则幂函数的图象过原点,并且在[0, +∞)上为增函数。如果a<0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴。

{{30}}$

〖补充知识〗二次函数

(1)二次函数解析式的三种形式

(2)求二次函数解析式的方法

①已知三个点坐标时,宜用一般式。

②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式。

③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便。

(3)二次函数图象的性质

{{33}}

一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布。

{{36}}

{{38}}

⑥k1<x1<k2≤p1<x2<p2 p="" 此结论可直接由⑤推出。

{{41}}

第三章 函数的应用

方程的根与函数的零点

高一数学知识点总结 7

集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

A?① 任何一个集合是它本身的子集。A

B那就说集合A是集合B的真子集,记作A B(或B A)?B,且A?②真子集:如果A

C?C ,那么 A?B, B?③如果 A

A 那么A=B?B 同时 B?④ 如果A

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

A}?S且 x? x?记作: CSA 即 CSA ={x

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一数学学习成绩差怎么办 8

一、回归课本

从高一开始,学生就应该增强自己从课本入手进行研究的意识。同学们可以把每条定理、每道例题都当做习题,认真地重证、重解,并适当加些批注。要通过对典型例题的讲解分析,归纳出解决这类问题的数学思想和方法,并做好解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,同学们要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,更是一个研究过程。

二、记好笔记,注重课堂

学生日常在听课时要集中注意力,把老师讲的关键性部分听懂、听会。要注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性地记好笔记,领会课上老师的主要精神与意图。

三、做好作业,讲究规范

在课堂、课外练习中,培养良好的作业习惯也很有必要。学生平常在做作业时,不但要做得整齐、清洁,还要有条理,作业独立完成,讲究效率,拖沓的做作业习惯容易使思维松散、精力不集中,这对培养数学能力是有害而无益的。

四、写好总结,把握规律

要想学好数学,学生们应该经常做好总结,把握规律。通过与老师、学生平时的互动交流,可以逐步总结出一般性的学习步骤,包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。应坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。

高一数学知识点总结 9

立体几何初步

NO.1柱、锥、台、球的结构特征

棱柱

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

圆柱

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

圆锥

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

球体

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高一数学知识点总结 10

几何定理

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12 两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22 边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(sss) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48 定理 四边形的内角和等于360°

49 四边形的外角和等于360°

50 多边形内角和定理 n边形的内角的和等于(n-2)×180°

51 推论 任意多边的外角和等于360°

52 平行四边形性质定理1 平行四边形的对角相等

53 平行四边形性质定理2 平行四边形的对边相等

54 推论 夹在两条平行线间的平行线段相等

55 平行四边形性质定理3 平行四边形的对角线互相平分

56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60 矩形性质定理1 矩形的四个角都是直角

61 矩形性质定理2 矩形的对角线相等

62 矩形判定定理1 有三个角是直角的四边形是矩形

63 矩形判定定理2 对角线相等的平行四边形是矩形

64 菱形性质定理1 菱形的四条边都相等

65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66 菱形面积=对角线乘积的一半,即s=(a×b)÷2

67 菱形判定定理1 四边都相等的四边形是菱形

68 菱形判定定理2 对角线互相垂直的平行四边形是菱形

69 正方形性质定理1 正方形的四个角都是直角,四条边都相等

70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71 定理1 关于中心对称的两个图形是全等的

72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75 等腰梯形的两条对角线相等

76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77 对角线相等的梯形是等腰梯形

78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

94 判定定理3 三边对应成比例,两三角形相似(sss)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值

100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101 圆是定点的距离等于定长的点的集合

102 圆的内部可以看作是圆心的距离小于半径的点的集合

103 圆的外部可以看作是圆心的距离大于半径的点的集合

104 同圆或等圆的半径相等

105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107 到已知角的两边距离相等的点的轨迹,是这个角的平分线

108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109 定理 不在同一直线上的三点确定一个圆。

110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112 推论2 圆的两条平行弦所夹的弧相等

113 圆是以圆心为对称中心的中心对称图形

114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116 定理 一条弧所对的圆周角等于它所对的圆心角的一半

117 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

119 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121 ①直线l和⊙o相交 d

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123 切线的性质定理 圆的切线垂直于经过切点的半径

124 推论1 经过圆心且垂直于切线的直线必经过切点

125 推论2 经过切点且垂直于切线的直线必经过圆心

126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127 圆的外切四边形的两组对边的和相等

128 弦切角定理 弦切角等于它所夹的弧对的圆周角

129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134 如果两个圆相切,那么切点一定在连心线上

135 ①两圆外离 d>r+r

②两圆外切 d=r+r

③两圆相交 r-rr)

④两圆内切 d=r-r(r>r) ⑤两圆内含dr)

136 定理 相交两圆的连心线垂直平分两圆的公共弦

137 定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139 正n边形的每个内角都等于(n-2)×180°/n

140 定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141 正n边形的面积sn=pnrn/2 p表示正n边形的周长

142 正三角形面积√3a/4 a表示边长

143 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144 弧长计算公式:l=nπr/180

145 扇形面积公式:s扇形=nπr2/360=lr/2

146 内公切线长= d-(r-r) 外公切线长= d-(r+r)

147 等腰三角形的两个底脚相等

148 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合

149 如果一个三角形的两个角相等,那么这两个角所对的边也相等

150三条边都相等的三角形叫做等边三角形

知识点总结

高一数学基础知识点 11

高一语文必修四知识点总结

一、《廉颇蔺相如列传》通假字

①可与不。“不”通“否”,表疑问语气。

②臣愿奉璧西入秦。“奉”通“捧”,用手托。

③拜送书于庭。“庭”通“廷”,朝廷。

④如有司案图。“案”通“按”,察看。

⑤设九宾礼于廷。“宾”通“傧”,古代指接引宾客的人,也指赞礼的人。

⑥秦自缪公以来,未尝有坚明约束者也。“缪”通“穆”。

⑦唯大王与群臣孰计议之。“孰”通“熟”,仔细。

⑧请奉盆缶。“奉”通“捧”,托、举。

二、《廉颇蔺相如列传》一词多义

①秦贪,负其强(依仗,凭借)

②臣诚恐见欺于王而负赵(辜负,对不起)

③相如度秦王虽斋,决负约不偿城(违背)

④均之二策,宁许以负秦曲(使……承担)

⑤廉颇闻之,肉袒负荆(背着)

使

①秦昭王闻之,使人遗赵王书(派)

②其人勇士,有智谋,宜可使(出使)

③乃使其从者衣褐(让)

④大王乃遣一介之使(使臣)

①引赵使者蔺相如(引见,延请)

②左右欲引相如去(拉)

③相如引车避匿(牵,拉;这里引申为调转)

高一语文下册必修三知识点

1、舒曼把它称为藏在花丛中的大炮,不是没有根据的。(这美好的音乐有时也是斗争的武器。是藏在花丛中的大炮。作为民族精神的支柱和基础的伟大艺术具有何等不可估量的威力。人们从肖邦音乐中获得了精神力量。)

2、只有他还住在这里,独自一人在雅致的房间里来回踱步。只有微弱的琴声在抗御风雪和寂静。只有音乐长存。(这里的他指的是肖邦的灵魂,他“身上那点最美好的东西”,肖邦的音乐就是肖邦的灵魂,它是永存的。)

3、灾难的忠实的姊妹——希望,正在阴暗的地底潜藏。

4、文化传统与传统文化并不一样,两者差别之大,几乎可以与蜜蜂和蜂蜜的差别相媲美。(传统文化指历代存在过的种种物质的、制度的和精神的文化实体和文化意识。文化传统指的是产生于历代生活,生活于民族的反复实践,形成为民族的集体意识和集体无意识,也就是民族精神。两者差别很大,但两者也有联系。民族精神存在于传统文化之中,所以可以比之为蜜蜂与蜂蜜。)

5、尼采就自诩过他是太阳,光热无穷,只是给与,不想取得。然而尼采究竟不是太阳,他发了疯。(以尼采作比,论述中国也不是太阳,不是光热无穷,不能只给予而不取得,否则将会使子孙穷困不堪。从而论证“送去主义”的行为是疯狂的。)

6、要不然,则当佳节大典之际,他们拿不出东西来,只好磕头贺喜,讨一点残羹冷炙做奖赏。

语文学习方法技巧

一、写一手好字,讲一口标准流利的普通话。写一手工整规范的汉字,说一口标准流利的普通话,不仅体现语文的基本功,也是高考的需要,现在高考作文要求中明确规定每一个错别字扣一分,上不封顶;卷面不洁也要适当扣分。而造成卷面不洁、错别字多的主要原因就是书写潦草、书写不认真。可有的同学对这个问题却不以为意,本来字写得就不好看,写字时还连蹦带跑,缺撇少捺,难以辨识。老师帮他指出问题,还振振有词说自己到正式考试就会认真写。其实,如果你平时没有养成认真书写的习惯,在考试的特定的紧张情绪中,当你想起要认真书写的时候,可能作文已经要接近尾声了。所以,我们平时写字时就要态度认真,一丝不苟。把字写得各部分均衡匀称,大小比例适当,规范大方,不写错别字,不乱涂改,不忽视标点,保证纸面(卷面)清洁。如果你的字现在没有写好,现在开始练习还来得及。俗语说,“练字不过百日”就是说,用一百天就能练一手好字,同学们不妨现在就去买一本好字贴,现在就开始练字。

如果说写一手好字,关系到一个人的脸面,那么讲一口标准流利的普通话,就体现了一个人素养。说丹东话并不能说明我们爱家乡,更何况我们丹东话并不太好听,也影响我们语文语感的形成,而语感对于我们理解课文平时考试地都有很大作用,平时做题时,有时说不清为什么,但却选对了答案,就是语感和语文综合能力的体现。所以,对于普通话,我们不仅要在课堂上说,而且在生活中也要说,规范自己的语言习惯,体现出自己较高的语文素养和综合素质。

二、养成零打碎敲勤积累的好习惯

我们每位同学都要准备一个积累本,这个本一定要保存好,高三复习时它就有大用途了,不夸张地说,到时千金不卖。平时我们要在本子里记下咬不准音、形、义的字词,需要背诵的古诗词,老师总结出来的方式方法,比较新奇的题型,可以说,无论是教材的还是试卷的,无论是报刊的还是杂志的,无论是谈话的还是阅读的,只要是自己拿不准的,只要是高考考的,都是我们应该积累的。积累的方法就是随时随地地有需要就分门别类地记在本上。对于学习,欧阳修善于利用“三上”的时间,即“马上、枕上、厕上”,郑板桥则利用“舟中、马上、被底”的零星时间读书背诵。古人勤奋读书的精神值得大家学习和借鉴。

三、养成勤于朗读背诵好习惯

朗读背诵是我国传统的学习语文的重要方法,是积累语言、培养语感的重要途径。朗读可以放到课前预习中,每篇课文都朗读2---3遍,在读的过程中划一划,查一查,问一问,写一写,做到一手拿书,一手拿笔,一边思考,一边朗读。不能平平淡淡的、漫不经心的读,朗读要做到吐字清晰,音准气足,节奏停顿合理,要有抑扬顿挫的韵律美,准确地体现出作者的情感。朗读人物的对话,要力求模拟出人物的心情、口吻,使人物形象活生生地站立在听者面前。朗读诗歌要铿锵悦耳,语势错落有致,节奏抑扬回环,具有音乐美。通过琅琅地朗读,文章的内容、情感、文句的优美、汉语音的韵律,也都能体会出来了。这有助于我们阅读能力的培养和阅读速度的提高,节省更多的阅读时间用来答题,进而提高答题的准确率。

关于背诵。俗话说“挖到篮子里才是菜”,意思是说,很多知识,你只有记住了才对自己管用。因此,必须想方法记住知识。记忆知识,可分为内储和外储。记在大脑里为内储,记在大脑以外,书本中、读书笔记中、日记中、摘抄本中、电脑里为外储。大脑是储存知识的仓库,据科学家们讲,大脑储存记忆知识的功能开发利用不到10%,应开发和充分利用大脑的储存功能,记忆储存更多的知识。因此,对积累本我们平时要经常翻看查阅,就可以把外储变为内储,真正转化为对自己有用的东西。很多知识只有经过不断的反复的强化记忆,才能在自己大脑里扎根。知识积累的多了,才能从根本提高自己的语文能力,才能在说话时、写作时、考试时把材料信手拈来,增强作文文采,提高语文成绩。

一键复制全文保存为WORD