六年级数学上册重点知识点总结

没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是小编给大家整理的一些六年级数学的知识点,希望对大家有所帮助。

六年级毕业考试数学重难知识点:几何面积

基本思路:

在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

常用方法:

1.连辅助线方法

2.利用等底等高的两个三角形面积相等。

3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

4.利用特殊规律

①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)

②梯形对角线连线后,两腰部分面积相等。

③圆的面积占外接正方形面积的78.5%。

六年级数学知识点

1、什么是图形的周长?

围成一个图形所有边长的总和就是这个图形的周长。

2、什么是面积?

物体的表面或围成的平面图形的大小叫做他们的面积。

3、加法各部分的关系:

一个加数=和-另一个加数

4、减法各部分的关系:

减数=被减数-差 被减数=减数+差

5、乘法各部分之间的关系:

一个因数=积÷另一个因数

6、除法各部分之间的关系:

除数=被除数÷商 被除数=商×除数

7、角

(1)什么是角?

从一点引出两条射线所组成的图形叫做角。

(2)什么是角的顶点?

围成角的端点叫顶点。

(3)什么是角的边?

围成角的射线叫角的边。

(4)什么是直角?

度数为90°的角是直角。

(5)什么是平角?

角的两条边成一条直线,这样的角叫平角。

(6)什么是锐角?

小于90°的角是锐角。

(7)什么是钝角?

大于90°而小于180°的角是钝角。

(8)什么是周角?

一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.

六年级数学下册单元知识点:统计图

(一)意义:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。

(二)分类

1、条形统计图

用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。

优点:很容易看出各种数量的多少。

注意:画条形统计图时,直条的宽窄必须相同。

取一个单位长度表示数量的多少要根据具体情况而确定;

复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

制作条形统计图的一般步骤:

(1)根据图纸的大小,画出两条互相垂直的射线。

(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。

(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

(4)按照数据的大小画出长短不同的直条,并注明数量。

2、折线统计图

用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。

注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。

制作折线统计图的一般步骤:

(1)根据图纸的大小,画出两条互相垂直的射线。

(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。

(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。

3、扇形统计图

用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

优点:很清楚地表示出各部分同总数之间的关系。

制扇形统计图的一般步骤:

(1)先算出各部分数量占总量的百分之几。

(2)再算出表示各部分数量的扇形的圆心角度数。

(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。

(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。

六年级数学下册知识点:圆柱和圆锥

1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

9.圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10.从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)

11.把圆锥的侧面展开得到一个扇形。

12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13.常见的圆柱圆锥解决问题:

①压路机压过路面面积(求侧面积);

②压路机压过路面长度(求底面周长);

③水桶铁皮(求侧面积和一个底面积);

④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

六年级数学上册重点知识点总结相关文章:

一键复制全文保存为WORD