在平日的学习中,看到知识点,都是先收藏再说吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。相信很多人都在为知识点发愁,的小编精心为您带来了五年级上册数学第三单元知识点解析(优秀5篇),如果对您有一些参考与帮助,请分享给最好的朋友。
五年级数学下册知识点梳理
1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
2、分母越大,分数单位越小,最大的分数单位是2(1)。
3、举例说明一个分数的意义:7(3)表示把单位“1”平均分成7份,表示这样的3份,还表示把3平均分成7份,表示这样的1份。7(3)吨表示把1吨平均分成7份,表示这样的3份。还表示把3吨平均分成7份,表示这样的1份。
4、4米的5(1)和1米的5(4)同样长。
5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。
7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。
8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。
被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)
10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作
13(1),读作一又三分之一。带分数都大于真分数,同时也都大于1。
11、把分数化成小数的方法:用分数的分子除以分母。
12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……
13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。
16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。
17、分数大小比较的应用题:工作效率大的快,工作时间小的快。
18、一些特殊分数的值:
2(1)=0.54(1)=0.254(3)=0.755(1)=0.25(2)=0.45(3)=0.6
5(4)=0.88(1)=0.1258(3)=0.3758(5)=0.6258(7)=0.87510(1)=0.116(1)=0.0625
16(3)=0.187516(5)=0.312520(1)=0.0525(1)=0.0450(1)=0.02100(1)=0.01
19、求一个数是(占)另一个数的几分之几,用除法列算式计算。
整除的算式的特征:
1、除数、被除数都是自然数,且除数不为0。
2、被除数除以除数,商是自然数而没有余数。
例:15能被5整除,我们就说,15是5的
倍数,5是15的因数。
知识点一:因数
问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?
所以12的因数有:
注意:
1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。
2、因数和倍数不能单独存在。
例1 18的因数有那些?
方法一:想18可以有哪两个数相乘得到18=1x18 18=2x9 18=3x6
方法二:根据整除的意义得到
18÷1=18 18÷2=9 18÷3=6
所以18的因数有:
表示方法:
1、列举法︰12的因数有:1,2,3,4,6,12
2、用集合表示︰
练习1:30的因数有哪些?36呢?
30的因数有:
36的因数有:
观察:18的最小因数是(),的因数是()
30的最小因数是(),的因数是)
36的最小因数是(),的因数是()
一个数的因数的个数是有限的,一个数的最小因数是(),因数是()
你要知道:
(1)1的因数只有1,的因数和最小的因数都是它本身。
(2)除1以外的整数,至少有两个因数。
(3)任何自然数都有因数1。
知识点二:倍数
问题二:2的倍数有哪些?
2的倍数有:2,4,6,8 …
例1、小蜗牛找倍数(找出3的倍数)。
练习3、5的倍数有哪些?7的倍数呢?
5的倍数:
7的倍数:
一个数的倍数的个数是(),一个数的最小的倍数是(),()的倍数。
用字母表示因数与倍数的关系:a — b = c(a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。
说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?
1、根据算式:4x8=32
说一说,谁是谁的因数?谁是的倍数?
2、根据算式:63÷7=9
说一说,谁是谁的因数?谁是的倍数?
3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?
知识点三:质数和合数
1、自然数按因数的个数来分:质数、合数、1、0四类。
(1)质数(或素数):只有1和它本身两个因数。
(2)合数:除了1和它本身还有别的因数。
(3)1:只有1个因数。“1”既不是质数,也不是合数。
注:
①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个()
④ 100以内的质数有25个:()
关系:奇数x奇数=奇数质数x质数=合数
2、常见、最小
A的最小因数是:1;最小的奇数是:1;
A的因数是:本身;最小的偶数是:0;
A的最小倍数是:本身;最小的质数是:2;
最小的自然数是:0;最小的合数是:4;
3、分解质因数:把一个合数分解成多个质数相乘的形式。
例:
分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。把36分解质因数是:36=2x2x3x3
4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:
分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。具体步骤是:
5、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
6、两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;
⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
三、经验之谈:
书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2x2x3x3就不能写成2x2x3x3=36;
短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数
图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:
①对称点到对称轴的距离相等;
②对称点的连线与对称轴垂直;
③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:
①旋转中心;
②旋转方向;
③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
1、axb=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。
找因数的方法:
一个数的因数的个数是有限的,其中最小的因数是1,1的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
2、自然数按是否是2的倍数来分:奇数偶数
奇数:不是2的倍数
偶数:是2的倍数(0也是偶数)
最小的奇数是1,最小的偶数是0.
个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。
3、自然数按因数的个数来分:质数、合数、1.
质数:有且只有两个因数,1和它本身
合数:至少有三个因数,1、它本身、别的因数
1:只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
4、分解质因数
用短除法分解质因数(一个合数写成几个质数相乘的形式)
5、公因数、公因数
几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。
用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;
⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
6、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较小的数就是它们的公因数;
较大的数就是它们的最小公倍数。
如果两数互质时,那么1就是它们的公因数
它们的积就是它们的最小公倍数。
小学数学四大领域主要内容
数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
数学做计算题型时需要注意什么
(1)认真读题,仔细审题;
(2)在计算一般算式时,得数的末尾也应该写出单位名称,但不打括号。例:32千克x4=128千克;
(3)应用题在算式中要在得数后加括号,填上单位名称。
例:一筐苹果重5千克,8箱苹果重多少千克?5x8=40(千克)
一、 商不变的性质:(包括以下知识点)
1、 除数不变,被除数扩大或缩小多少倍,商就扩大或缩小多少倍;
2、 被除数不变,除数扩大或缩小多少倍,商就缩小或扩大多少倍;
3、 被除数与除数同时扩大或同时缩小多少倍,商不变;
4、 被除数与除数同时扩大时或同时缩小不同倍数;
5、 被除数与除数一个扩大一个缩小不同倍数;
2.44÷1.3 ○ 24.4÷13 1.8÷7 ○ 18÷0.7
二、 计算
1、 除数是整数的除法
知识点:除数是整数的小数除法的计算方法:按照整数除法的法则去计算,商的小数点要和被除数的小数点对齐。
10.32÷12= 14.28÷28= 易错题:
2、 除数是小数的除法
知识点:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几们,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”来补足);然后按照除数是整数的除法的计算方法进行计算。
12÷2.4= 1.04÷0.26= 4.9÷0.07= 8.7÷0.03=
竖式易错题:
三、 商的近似值
知识点:用“四舍五入”法求商的近似值的方法:根据题目要求或实际情况,除到保留倍数的下一位,这一位上的数小于5就直接舍去尾数,大于或等于5就向前一位进1。
(保留两位小数) (保留一位小数) (保留整数)
324.57÷7≈ 9÷11≈ 32÷6≈
四、 商与被除数的大小关系
1、 除数小与1时,商大于被除数(被除数≠0,除数≠0);
2、 除数大于1时,商小于被除数(被除数≠0);
3、 除数等于1时,商等于被除数。
3.25÷0.92 ○ 3.25 0.37÷0.99 ○ 0.37
0.85÷1.2 ○ 0.85 1.01÷2.4 ○ 1.01
五、 循环小数
知识点:
1、小数部分依次不断重复的一个或几个数字,叫做这个循环小数的循环节。
2、小数位数是无限的小数,叫做无限小数。循环小数是无限小数。
3、小数位数是有限的小数,叫做有限小数。
4、循环节从小数部分第一位开始的,叫做纯循环小数。如:0.32323……,3.2121……等。
5、循环节不是从小数部分第一位开始的,叫混循环小数。如:0.12424……,15.31414……等。
第一单元小数乘法
1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
如:1.5x3 表示 1.5 的 3 倍是多少或 3 个 1.5 的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中 一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。
如:1.5x0.8 就是求 1.5 的'十分之八是多少。
1.5x1.8 就是求 1.5 的 1.8 倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的 0 要去掉,把小数化简;小数部分位数不够时,要用 0 占位。
3、规律(1)(P9):一个数(0 除外)乘大于 1 的数,积比原来的数大;
一个数(0 除外)乘小于 1 的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律: a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质: a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:axb=bxa
乘法结合律:(axb)xc=ax(bxc)
乘法分配律:(a+b)xc=axc+bxc 【(a-b)xc=axc-bxc】
除法:除法性质: a÷b÷c=a÷(bxc)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3 表示已知两个因数的积 0.6 与其中的一个因数 0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
10、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用 0 补足。
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。
12、(P24、25)除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。
②除数不变,被除数扩大,商随着扩大。 被除数不变,除数缩小,商扩大。
③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232…… ……的循环节是 32.
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
17、axa 可以写作 a·a 或 a ,a 读作 a 的平方。 2a 表示 a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。
20、 个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数x因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商x除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的检验过程:方程左边=……
23、方程的解是一个数;
解方程式一个计算过程。=方程右边
所以,X=…是方程的解。
第五单元多边形的面积
23、公式:
长方形:周长=(长+宽)x2--【长=周长÷2-宽;宽= 周长÷ 2-长】 字母公式:C=(a+b)x2
面积= 面积=长x宽 字母公式:S=ab
正方形:周长=边长x4 字母公式:C=4a
平行四边形的面积=底x高 字母公式: S=ah
三角形的面积=底x高÷2 --【底=面积x2÷高;高=面积x2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)x高÷2 字母公式: S=(a+b)h÷2
【上底=面积x2÷高-下底,下底=面积x2÷高-上底;高=面积x2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移
25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的 2 倍,
因为长方形面积=长x宽,所以平行四边形面积=底x高。
因为平行四边形面积= 因为平行四边形面积=底x高,所以三角形面积=底x高÷2
26、梯形面积公式推导:旋转
27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的 2 倍,
因为平行四边形面积=底x高,所以梯形面积=(上底+下底)x高÷2
28、等底等高的平行四边形面积相等;
等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的 2 倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
0 5 4 0 0 1
前 3 位表示邮区
前 4 位表示县(市)
最后 2 位表示投递局
35、身份证码: 18 位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。