七年级数学优秀教案【优秀6篇】

作为一位杰出的教职工,常常要写一份优秀的教案,教案是教材及大纲与课堂教学的纽带和桥梁。来参考自己需要的教案吧!这次为您整理了七年级数学优秀教案【优秀6篇】,在大家参照的同时,也可以分享一下给您最好的朋友。

七年级数学教案 篇1

【学习目标】:

1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念

【教学过程】:

一、知识链接:

1、小学里学过哪些数请写出来:

2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习

1、正数与负数的产生

(1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示。

(3)阅读P2的内容

3、正数、负数的概念

1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:

1、 P3第1,2题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54

则正数有_____________________;负数有____________________。

4.下列结论中正确的是 ????????????????( )

A.0既是正数,又是负数

C.0是最大的负数

【要点归纳】:

正数、负数的概念:

(1)大于0的数叫做 ,小于0的数叫做 。

(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【拓展训练】:

1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,

其中最高处为_______地,最低处为_______地.

3.“甲比乙大-3岁”表示的意义是______________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

【课后作业】P5第1、2题

七年级数学教案 篇2

教学目标

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例

公式

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

七年级数学教案 篇3

一、教材分析

(一)本节知识在教材中的地位

社会在向信息时代迈进,数据日益成为一种重要的信息,统计概率所提供的“运用数据进行推断”的思维方法已成为现代社会一种普遍并且强有力的思维方式。从“课标”看,“统计与概率”领域主要学习收集、整理、描述、分析数据及处理数据的基本方法和概率的初步知识。本章内容是第三学段统计部分的第一章,主要内容是收集数据和整理数据的常用方法,是第三学段“统计与概率”的起始章节,起着承上启下的作用,是今后学习的基础。

(二)重点难点分析

1、重点

抽样调查收集数据的方法和数据整理的方法。

2、难点

抽样调查收集数据的方案设计、数据分析以及根据数据的分析结果作出合理的判断。

(三)总体目标

1、知识目标

通过抽样调查举例的学习,了解抽样调查的两种方法,能从事调查过程,能从事收集、整理、描述、分析数据,作出判断并进行交流活动,感受抽样的必要性,体会用样本估计总体的思想,掌握抽样调查收集数据的方法,会用表格、析线图反映数据信息。

2、能力目标

会设计简单的调查问卷,在收集、整理、描述和分析数据的统计活动中,能合理地处理数学信息,逐步学会用数据事实说话,并作出合理的推断或大胆的猜测。体会在解决问题的过程中与他人合作的重要性。

3、情感目标

通过对中小学生视力情况的抽样调查过程,培养学生乐于接触社会环境中的数学信息,激发学生在活动中发挥积极作用,敢于面对活动中的困难,并有独立克服困难和运用知识去解决问题的勇气和信心。体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据、用事实说话的习惯和事实求是的科学态度。

二、设计理念

现代课程观认为,课程不仅是文本课程,更是体验课程;课程不再是知识的载体,而是探求新知的过程。教学活动要充分体现学生的自主意识和个性差别,要充分尊重学生的主体地位,使学生在主动与创造中获得发展。本节课在设计时遵循新“课标”,贯彻新理念,着眼于学生知识与技能,情感与态度的和谐发展,为学生提供大量实践活动的机会,促进学生积极主动地参与活动。

统计与现实生活的联系是非常紧密的,这一领域的内容对学生来说充满了趣味性和吸引力。通过选择典型的、学生感兴趣的和学生生活紧密相联系的“调查中小学生的视力情况”为例子进行教学,拓展课堂概念。在教学过程中,充分体现学生是学习的主体。通过让学生亲自动手收集和整理数据的活动,让学生体会数学活动充满了乐趣,使学生更好地体会统计思想,建立统计概念。在教学活动中,以活动为载体,以问题为线索,让学生学会用数据和事实说话,培养学生实事求是的科学态度,促进学生学习方式的转变,培养学生的创新精神与实践能力。

三、教法与学法

(一)教法

1、充分以学生为主体进行教学,通过让学生亲自动手收集、整理、描述和分析数据来掌握统计的方法和原理。

2、采用“调查──收集──整理──分析”的过程教学,养成用数据说话的习惯和实事求是的科学态度。

分小组活动,讨论交流多渠道信息反馈。

(二)学法

1、指导学生学会对数据的收集、整理、描述和分析的基本方法,利用样本估计总体是统计的基本思想。

2、引导学生掌握思考问题的方法及解决问题的途径。

3、指导学生利用所学知识,解决实际问题。

四、活动目标

体验统计调查的全过程,确定统计调查方案,确定样本,收集数据,整理、描述、分析数据,得出结论。

五、教学活动设计

(一)创设情境 确定方案

1、提出问题(多媒体课件展示问题情境)

随着人们生活水平的提高,电视、电脑的普及,中小学生的视力普遍下降,专家呼吁要保护学生的视力。我市中小学生的视力状况怎样?我们又如何获取这一状况的数据进行分析?

(学生开展讨论交流,组织学生自学第156页第一、二和三自然段)

通过贴近学生生活实际的问题情景,吸引学生的注意力,让学生自主学习,分组讨论,了解本节课所要实现的目标:(1)调查本市中小学生视力的情况;(2)调查方法:①全面调查;②抽样调查。激发学生活动愿望,从而达到全员参与活动的过程。

2、制定调查方案

(多媒体展示问题背景)

据统计,我市学生有67万人,面对这样一个巨大数据,怎样调查才能既省时又省力地实现活动的目标呢?请看两则阅读材料:

材料一:数据来源一般有两条渠道,一条是通过统计调查或科学试验得到第一手或直接的统计数据,另一条是通过查阅资料等获得统计数据。统计调查是获得第一手数据的重要途径,常常通过访问、邮寄、电话、电脑辅助等形式来收集数据;科学试验是取得自然科学数据的主要手段;各种文献资料、报刊、广播、电视媒体等都提供了大量的统计数据,通过这些资料和媒体可以获得第二手数据。

材料二:几种常用的抽样方式。一是简单随机抽样,又称纯随机抽样,它是按随机原则直接从总体N个单位中抽取n个单位作样本,这种抽样方式能使总体中每一个单位有同等机会被抽中,这种方式是抽样中最基本的,也是最简单的方式;二是类型随机抽样,这种方式先将总体单位按某一主要标志分类,然后再从各类中随机抽取样本单位,这是一种将分组法和抽样法结合起来的方式;三是机械抽样,这种方式是将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取相同个数据的个体,这种抽样叫做系统抽样;四是整群随机抽样,先将总体分成若干群(组),然后再从其中随机抽取一些群,并对抽中各群中的全部单位一一进行调查。各样本群中所包含的单位数可以相同也可以不同,这种抽样方法抽取的基本单位不再是个体而是群。

(老师参与和学生一起交流、讨论、设计不同的个案)

教师是学生学习的组织者、引导者与合作者,通过上述两篇阅读材料给学生提供获得数据的方法以及在统计中常用的抽样方式,帮助学生根据具体问题感受抽样调查的必要性,并设计出抽样调查的方案及调查问卷的编制。

如果为了获得我市中小学生视力状况的数据,找出保护视力的措施,我们采用问卷调查,那么调查问卷中应包括哪些问题?

(组织学生讨论编制调查问卷,让学生广泛发表自己的见解设制调查问卷,根据讨论情况教师用课件展示中小学生视力调查问卷)

中小学生视力调查问卷 年 月 日

让学生通过已有的生活经验,调查生活中影响视力的不良习惯,从而设计调查问卷,这样设计是出于新教育理念中,数学来源于实际生活的理念。

(二)实施方案合作完成

1、教师利用多媒体展示问题背景,组织学生讨论确定调查对象。全市有29所高中,400所初中,1 000多所小学,怎样选取调查学校及人数才能较准确地反映出全市中小学生的视力情况呢?

(教师参与和学生一起讨论,引导得出结论:采取抽样问卷调查)

(1)确定调查的学校

高中选取2所:城区一所、农村一所;初中选取三所:市直一所、郊区一所、农村一所;小学选取四所:市直一所、区直一所、市郊一所、农村一所。

(2)确定调查人数

高中每年级抽取100人共300人,初中每年级抽取100人,共300人,小学每年级抽取50人,共300人,在抽取的人数中男女生各半。

(3)确定调查时间

利用周六、周日进行调查。

2、分小组活动进行调查

全班分成三个大组:高中组、初中组、小学组。高中组分成六个小组(两人一组)分别调查两所高中的每个年级的学生;初中组分成9个小组(两人一组),三所学校每个年级一个小组;小学组分24个小组,四所学校每个年级一个小组,各小组各采用不同方式进行问卷调查。

让学生经过先思后议,从不同的角度体会到问题的普遍性和特殊性,抽样调查的选择要具有代表性,使学生亲身体验到在生活中通过数学为生活服务的理念,并且要使学生接受统计特有的观念,最有效的办法是让他们真正投入到产生和发展统计观念的活动中,进一步感受数学知识在实际生活中所发挥的作用。

(三)合作交流整理数据

1、各组展示调查数据并讨论回答下列问题:

(1)一个完整的统计调查活动的基本环节及各环节中包含的主要内容有哪些?请采用画图的方式或列举的方式表示;

(2)在数据整理的过程中,统计图起什么作用?你知道的统计图有哪些?

2、引导学生将收集的数据进行整理、统计后填入下表格中。(课件展示表格)

中小学生视力调查统计表

3、描述数据

(1)学生交流各自数据,画出高中、初中、小学学生视力折线图;

(2)根据活动统计的数据,画出城市中小学生和农村中小学生的视力统计图。(课件展示学生画出的折线图)

主要让学生掌握抽样调查中收集、整理、描述和分析数据等处理数据的基本方法。由数到形,由易到难,由特殊到一般,从而认识事物的变化和发展,让不同的学生在数学上都得到发展。

(四)展示结果得出结论

1、组织学生讨论分析数据(通过观察表格、折线图,学生进行讨论)

(1)高中、初中及小学的视力情况各如何?

(2)城区、农村学生的视力情况各如何?

(3)男生、女生视力不良情况及其所占比例?

(4)使用电脑时间长短对视力的影响如何?

2、根据数据分析得出结论可能有:(课件展示学生得出的结论)

(1)高、初、小随年级升高,学生视力不良率也升高;

(2)城区的学生比农村学生视力的不良率高;

(3)看电视、用电脑时间长影响学生视力。

(4)全市的视力情况。

在第三学段“课标”要求,通过自然、社会、科学技术领域中的现实问题,使学生主动地从事统计的过程,进一步体验统计是制定决策的有力手段,使学生在分析数据统计活动中,逐步学会用数据说话,自觉地用统计的方法来解决一些实际问题。

(五)反馈练习及作业

(1)设计一个方案,了解本校学生最喜欢的学科;

(2)针对调查统计结果,每人写一份倡议书,号召本校全体学生如何保护自己的视力。

通过这道题让学生再一次经历数据的收集、分析、整理以及分析的基本过程,让学生通过对问题的思考获得结论,通过对解决问题的过程的反思加深认识和调查结果的应用。

(六)小结

引导同学们对这次活动课所学内容进行小结,组织学生交流活动的收获和体会以及为防止视力变坏应该采取的措施。

六、活动设计说明

(一)依据“课标”,本节课分三个教学活动环节:第一个教学活动环节是学生认知本次活动的目标。教师引导学生与自己一起,讨论调查对象,调查方法,建立活动方案。这个过程达到师生互动、学生主体参与的目的。学生在参与活动中,获得统计的基本思想,编制调查问卷;第二个教学活动环节是学生亲身经历社会实践活动,收集数据,灵活地采用不同方法和手段进行社会调查,获取资料,实现主动参与合作的目的;第三个教学活动环节是展示成果,互动互补,完成活动目的。分小组展示成果,在交往互动中实现互补过程,使学生对抽样调查形成一个完整的认识。

(二)在整个教学活动中,学生的知识,不是从教师和书本那里直接复制或灌输到头脑中来的,而是在主动探究、合作交流中获得,表现为问题让学生自己去发现,过程让学生自己去感受,结论让学生自己去总结。

(三)为了使抽取的样本具有代表性,即使样本的统计值近似总体的参数值,人们在实践中总结出一些抽样的方法,因此在阅读材料中,介绍了几种常用的抽样方法。

七年级数学教师必备教案 篇4

教学目标:

1、会用代入法解二元一次方程组。

2、初步体会解二元一次方程组的基本思想――“消元”。

3、通过研究解决问题的方法,培养学生合作交流意识与探究精神。

重点:

用代入消元法解二元一次方程组。

难点:

探索如何用代入法将“二元”转化为“一元”的消元过程。

教学过程:

复习提问:

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?

解:设这个队胜_场,根据题意得

解得

_=18

则20-_=2

答:这个队胜18场,负2场。

新课:

在上述问题中,我们可以设出两个未知数,列出二元一次方程组

设胜的场数是_,负的场数是y,

_+y=20

2_+y=38

那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程_+y=20说明y=20-_,将第2个方程

2_+y=38的y换为20-_,这个方程就化为一元一次方程。

二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

归纳:

上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

例1把下列方程写成用含_的式子表示y的形式:

(1)2_-y=3(2)3_+y-1=0

例2用代入法解方程组

_-y=3①

3_-8y=14②

例3根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5。某厂每天生产这种消毒液22。5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?

用代入消元法解二元一次方程组的步骤:

(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来。

(2)把(1)中所得的方程代入另一个方程,消去一个未知数。

(3)解所得到的一元一次方程,求得一个未知数的值。

(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。

作业:

教科书第98页第3题

第4题

七年级数学教案 篇5

一、知识结构

在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念。培养学生的空间观念。

二、重点、难点分析

能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点。本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、体的关系具有重要的意义。

1、我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系。

2、例如:在图中长方体的棱AA'与面ABCD垂直,面A'ABB'与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:

(1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直。

(2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直。

正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面A'B'C'D'的位置关系,把棱AB向两方延长,面A'B'C'D'向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DD'C'C是互相平行的,棱AA'与面BB'C'C、与面DD'C'C也是互相平行的。

再看面ABCD与A'B'C'D',这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AA'B'B与DD'C'C也是互相平行的。

3、直线与平面、平面与平面平行的判定

(1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。(直线与平面平行的判定)

(2)如果一个平面内两条直线都与另一个平面平行,那么这两个平面互相平行。(空间里平面与平面平行的判定)

三、教法建议

1、空间里的平行关系,是高中学习《立体几何》的重要部分,本节知识在初中阶段让学生积累一些感性的认识。学习这节内容要注意联系实物(如火柴盒,教室)中的线与线、线与面、面与面的关系就容易得多了。

2、本节在已有的对长方体的直观认识的基础上,通过对长方体的棱与面、面与面的不相交的观察,介绍了空间里的直线与平面、平面与平面平行的关系。目的主要是培养空间思维,但只是一个初步的感性认识,只需基本了解,不需要系统地学习。

3、教学时应该注意的是这里所说的平面一定是无限延伸的。两面墙平行,是指两面墙所在的平面平行,不是指墙这一小部分平行。

一、教学目标

1、能借助长方体的棱与面、面与面的平行关系,说出空间里直线与平面、平面与平面的平行关系。

2、此外,在教学“空间里的平行关系”中,要培养学生的空间想象力。

3、通过平行关系在生活中的应用,培养学生的应用意识。

二、引导性材料

复习提问:

1、平面里,两直线的位置关系有哪些?在空间里,两直线的位置关系又有哪些?

2、试说出两直线平行的意义。

前面,我们在学习“两直线互相垂直”时,曾经学习过空间里的垂直关系。(可让学生以教室为实例,说出一些线与面,面与面的垂直关系。)

前几节课,又学习了“平行线”的有关知识,在实际生活中常常也说什么与什么“平行”。(教师演示:一根木条或铅笔与桌面平行。)这种“平行”关系是什么样的平行关系呢?你也能举出一些这样的实例吗?这节课就研究这些问题。

三、知识产生和发展过程的教学设计

问题1—1:观察下图(也可要求学生携带一个长方体的包装纸盒)中的长方体,棱AB与面A'B'C'D'的位置关系是什么?如果将棱AB向两边无限伸展,同时也将面A'B'C'D'向各个方向延展,它们之间有无可能相交?

问题1-2:图中,你能以棱AB与面A'B'C'D'为一个具体例子,用类似于定义“平行线”的方法,给直线与平面平行下一个定义吗?

(由学生口答,教师帮助完善,得出定义。)

问题1-3:图中,除了棱AB外,还有与面A'B'C'D'平行的棱吗?有哪几条?

(由学生分别说出棱BC,CD,AD都与面A'B'C'D'平行。)

问题1-4:除了面A'B'C'D'外,棱AB还与哪个平面平行?

问题2—1:如下图的长方体中,面ABCD与面A'B'C'D'能否相交?怎样定义空间里的两平面平行?

问题2-2:观察你自己携带的长方体纸盒,能说出哪些平面平行吗?

(可由学生讨论后,请一位学生带上纸盒,给学生边演示,边讲解。)

四、例题解析

例题:如下图,在长方体中,棱CD与哪些面平行?面A'B'C'D'与哪些棱平行?

答:棱CD与面A'B'BC、面A'B'C'D'平行;

面A'ADD'棱BB、棱BC、棱C'C、棱B'C平行;

面A'B'BA与面D'C'CD平行。

(教师可根据教学的实际情况,对此例进行变式,如提出不同位置的线面。面面平行的问题。也可让学生自己来提出问题。由学生自己借助长方体纸盒解答这些问题,以增强学生对空间平行关系的感知,发展想象能力。)

五、练习

课本第90页练习第l、2题。

六、小结

本堂课以长方体(教室或纸盒)为实物模型,通过观察长方体的棱与面、面与面的位置关系,并把它们想像成空间里的直线与平面、平面与平面,研究了空间里的线与面、面与面平行的关系。

我们生活在空间里,因而要养成用数学的眼光去观察世界的习惯,并逐步地学会用数学知识去研究问题、解决问题。

七年级数学教案 篇6

一、素质教育目标

(一)知识教学点

1.使学生理解近似数和有效数字的意义

2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字

3.使学生了解近似数和有效数字是在实践中产生的.

(二)能力训练点

通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.

(三)德育渗透点

通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想

(四)美育渗透点

由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.

二、学法引导

1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识

2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习

三、重点、难点、疑点及解决办法

1.重点:理解近似数的精确度和有效数字.

2.难点:正确把握一个近似数的精确度及它的有效数字的个数.

3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片

六、师生互动活动设计

教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.

七、教学步骤

(一)提出问题,创设情境

师:有10千克苹果,平均分给3个人,应该怎样分?

生:平均每人千克

师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?

生:不能

师:哪怎么分

生:取近似值

师:板书课题

【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性

(二)探索新知,讲授新课

师出示投影1

下列实际问题中出现的数,哪些是精确数,哪些是近似数.

(1)初一(1)有55名同学

(2)地球的半径约为6370千米

(3)中华人民共和国现在有31个省级行政单位

(4)小明的身高接近1.6米

学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.

师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?

启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.

以开始提出的问题为例,揭示近似数的有关概念

板书:

1.精确度

2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.

例如:3.3有二个有效数字

3.33有三个有效数字

讨论:近似数0.038有几个有效数字,0.03080呢?

【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②

例1.(出示投影2)

下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?

(1)43.8(2)。03086(3)2.4万

学生口述解题过程,教者板书.

对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.

【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.

巩固练习见课本122页练习2、3页

例2(出示投影3)

下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?

一键复制全文保存为WORD